Diese vier Datenbank-Skills benötigen KI-Apps dringend

Daten sind gleichzeitig Motor und Treibstoff bei der Entwicklung und dem Betrieb von KI-Anwendungen. Entsprechend zentral ist die Rolle der Datenbank. [...]

Foto: PeteLinforth/Pixabay

Couchbase erklärt, welche Skills sie mitbringen muss, um KI-tauglich zu sein.

Hohe Performance und Skalierbarkeit in allen Lebenslagen sind im Datenbank-Umfeld auch 2024 noch immer keine Selbstverständlichkeit. Dabei sind beide nur zwei der elementaren Fähigkeiten, die eine KI-geeignete Datenbank mitbringen muss.

Darüber hinaus aber stellt KI noch ganz eigene, sehr spezifische Anforderungen an den Funktionsumfang einer Datenbank. Couchbase beschreibt vier elementare Fähigkeiten, die eine KI-fähige Datenbank besitzen muss:

Flexibles Datenmodell:

Das wahrscheinlich größte Problem bei der Entwicklung und Optimierung von KI-Anwendungen sind geeignete Daten, sowohl quantitativ als auch qualitativ.

Dabei ist der Großteil der verfügbaren Daten unstrukturiert, gleichzeitig produzieren KI-Anwendungen selbst eine Unmenge an unstrukturierten Daten. Eine Datenbank benötigt deshalb ein flexibles Datenmodell (JSON), das diese Daten nutzen, speichern, verarbeiten und bereitstellen kann.

Multimodell-Struktur:

Flexibilität ist auch bei der Datenbank-Architektur gefragt. Multimodell-Datenbanken machen Multi-Database-Architekturen überflüssig, die separate Datenbanken für die verschiedenen Speicher- und Abfrageformate (SQL, NoSQL) einsetzen.

Diese Datenbanken reduzieren Aufwand und Fehlerquellen und vereinfachen so das Datenmanagement. Zugleich senken sie das Risiko von KI-Halluzinationen.

Edge-Features:

Immer mehr KI-Apps werden an der Edge eingesetzt – und das häufig in Verbindung mit KI-Tools aus der Cloud.

In diesen Szenarien werden Datenbanken benötigt, die Daten-Hosting und -verarbeitung dezentral bei niedrigsten Latenzzeiten beherrschen, um Daten für KI-Anwendungen sowohl in der Cloud, an der Edge als auch im Endgerät in Echtzeit bereitstellen zu können.

Vector Search:

Ein immer wichtiger werdendes Datenbank-Feature im KI-Umfeld ist Vector Search (VS). Bei der Vektorsuche soll mit Hilfe von Machine Learning der Kontext unstrukturierter Daten erfasst werden, meist für semantische Suchen.

Die VS-Fähigkeit einer Datenbank erspart den Einsatz separater Vektor-Datenbanken, senkt damit sowohl die Komplexität als auch die Kosten und verbessert so den Return-on-Invest.

„KI ist auf Datenbanken angewiesen, die Daten bei der Entwicklung und dem Betrieb von KI-Apps schnell und unkompliziert bereitstellen“, erklärt Paul Salazar, Area Vice President Central and Eastern Europe bei Couchbase.

„Für KI-Anwendungen prädestinierte Datenbanken punkten mit besonderen Features wie Edge-Handling oder Vector Search, die den Einsatz separater Datenbanken für spezifische Teilaspekte überflüssig machen und so einem der größten KI-Probleme gleich an der Wurzel begegnen: der zu großen Komplexität.“


Mehr Artikel

News

Bad Bots werden immer menschenähnlicher

Bei Bad Bots handelt es sich um automatisierte Softwareprogramme, die für die Durchführung von Online-Aktivitäten im großen Maßstab entwickelt werden. Bad Bots sind für entsprechend schädliche Online-Aktivitäten konzipiert und können gegen viele verschiedene Ziele eingesetzt werden, darunter Websites, Server, APIs und andere Endpunkte. […]

Frauen berichten vielfach, dass ihre Schmerzen manchmal jahrelang nicht ernst genommen oder belächelt wurden. Künftig sollen Schmerzen gendersensibel in 3D visualisiert werden (c) mit KI generiert/DALL-E
News

Schmerzforschung und Gendermedizin

Im Projekt „Embodied Perceptions“ unter Leitung des AIT Center for Technology Experience wird das Thema Schmerzen ganzheitlich und gendersensibel betrachtet: Das Projektteam forscht zu Möglichkeiten, subjektives Schmerzempfinden über 3D-Avatare zu visualisieren. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*