Machine Learning – darum geht es

Machine Learning, Deep Learning, Cognitive Computing - Technologien der Künstlichen Intelligenz verbreiten sich rasant. Hintergrund ist, dass heute die Rechen- und Speicherkapazitäten zur Verfügung stehen, die KI-Szenarien möglich machen. Ein Überblick in drei Teilen. [...]

Im Kontext von ML haben sich in den vergangenen Monaten auch alternative Hardwarekomponenten durchgesetzt, etwa GPU-basierte Cluster von Nvidia, Googles Tensor Processing Unit (TPU) oder IBMs TrueNorth-Prozessor. Unternehmen müssen sich entscheiden, ob sie hier selbst investieren oder die Angebote entsprechender Cloud-Provider nutzen wollen.
Einer der großen Anwendungsbereiche für ML ist die Spracherkennung und -verarbeitung. Amazons Alexa zieht gerade in die Haushalte ein, Microsoft, Google, Facebook und IBM haben hier einen Großteil ihrer Forschungs- und Entwicklungsgelder investiert sowie spezialisierte Firmen zugekauft. Es lässt sich absehen, dass natürlichsprachige Kommunikation an der Kundenschnittstelle selbstverständlicher wird. Auch die Bedienung von digitalen Produkten und Enterprise-IT-Lösungen wird via Sprachbefehl möglich sein. Das hat sowohl Auswirkungen auf das Customer-Frontend als auch auf das IT-Backend.
NIEDRIGE EINSTIEGSHÜRDEN IN MACHINE LEARNING
Da die großen Cloud-Anbieter ML-Services und -Produkte in ihr Leistungsportfolio aufgenommen haben, ist es für Anwender relativ einfach, einen Einstieg zu finden. Amazon Machine Learning, Microsoft Azure Machine Learning, IBM Bluemix und Google Machine Learning erlauben einen kostengünstigen Zugang zu entsprechenden Diensten über die Public Cloud. Anwender brauchen also keinen eigenen Supercomputer, kein Team von Statistikexperten und kein dediziertes Infrastruktur-Management mehr. Mit ein paar Kommandos über die APIs der großen Public-Cloud-Provider können sie loslegen.
Anwender brauchen vor allem Hilfe bei der Datenexploration. (c) Crisp Research, Kassel
Sie finden dort unterschiedliche Machine-Learning-Verfahren sowie Dienste und Tools wie etwa grafische Programmiermodelle und Storage-Dienste vor. Je mehr sie sich darauf einlassen, desto größer wird allerdings das Risiko eines Vendor-Lock-ins. Deshalb sollten sich Anwender vor dem Start Gedanken über ihre Strategie machen. IT-Dienstleister und Managed-Service-Provider können ebenso ML-Systeme und Infrastrukturen bereitstellen und betreiben, so dass Unabhängigkeit von den Public-Cloud-Providern und ihren SLAs ebenso möglich ist.
VERSCHIEDENE SPIELARTEN DER KI
Machine Learning, Deep Learning, Cognitive Computing – derzeit kursieren eine Reihe von KI-Begriffen, deren Abgrenzung voneinander nicht ganz einfach ist. Crisp Research wählt dafür die Dimensionen „Clarity of Purpose“ (Orientierung am Einsatzweck) und „Degree of Autonomy“ (Grad der Autonomie). ML-Systeme sind derzeit größtenteils auf Einsatzzwecke hin entwickelt und trainiert. Sie erkennen beispielsweise im Fertigungsprozess fehlerhafte Produkte im Rahmen einer Qualitätskontrolle. Ihre Aufgabe ist klar umrissen, es gibt keine Autonomie.
Deep-Learning-Systeme hingegen sind in der Lage, mittels Neuronaler Netze eigenständig zu lernen. Simulierte Neuronen werden in vielen Schichten übereinander modelliert und angeordnet. Jede Ebene des Netzwerks erfüllt dabei eigenständig bestimmte Aufgaben, etwa das Erkennen von Kanten. Diese Information wird eigenständig an die nächste Ebene weitergegeben und fließt dort in die Verarbeitung ein. Im Zusammenspiel mit großen Mengen an Trainingsdaten lernen solche Netzwerke, bestimmte Aufgaben zu erledigen – etwa das Identifizieren von Krebszellen in medizinischen Bildern.
DEEP-LEARNING-SYSTEME ARBEITEN AUTONOMER
Deep-Learning-Systeme arbeiten also deutlich autonomer als ML-Systeme, da die Neuronalen Netzwerke darauf trainiert werden, selbständig zu lernen und Entscheidungen zu treffen, die von außen nicht unbedingt nachvollziehbar sind.
Als dritte Spielart der KI gilt das Cognitive Computing, das insbesondere von IBM mit seiner Watson-Technologie propagiert wird. Solche Systeme zeichnen sich dadurch aus, dass sie in einer Assistenzfunktion oder gar als Ersatz des Menschen Aufgaben übernehmen und Entscheidungen treffen und dabei mit Ambiguität und Unschärfe umgehen können. Als Beispiele können das Schadensfall-Management in einer Versicherung dienen, eine Service-Hotline oder die Diagnostik im Krankenhaus.
Auch wenn hier bereits ein hohes Maß an Autonomie erreicht werden kann, ist der Weg zu echter Künstlicher Intelligenz mit autonomen kognitiven Fähigkeiten noch weit. Die Wissenschaft beschäftigt sich aber intensiv damit und streitet darüber, ob und wann dieses Ziel erreicht werden kann. Derweil sind Unternehmen gut beraten, sich mit den machbaren Use Cases zu beschäftigen, von denen es bereits eine Menge gibt.
*Heinrich Vaske ist Editorial Director von COMPUTERWOCHE und CIO


Mehr Artikel

News

Public Key Infrastructure: Best Practices für einen erfolgreichen Zertifikats-Widerruf

Um die Sicherheit ihrer Public Key Infrastructure (PKI) aufrecht zu erhalten, müssen PKI-Teams, sobald bei einer Zertifizierungsstelle eine Sicherheitslücke entdeckt worden ist, sämtliche betroffenen Zertifikate widerrufen. Ein wichtiger Vorgang, der zwar nicht regelmäßig, aber doch so häufig auftritt, dass es sich lohnt, PKI-Teams einige Best Practices für einen effektiven und effizienten Zertifikatswiderruf an die Hand zu geben. […]

News

UBIT Security-Talk: Cyberkriminalität wächst unaufhaltsam

Jedes Unternehmen, das IT-Systeme nutzt, ist potenziell gefährdet Opfer von Cyberkriminalität zu werden, denn die Bedrohung und die Anzahl der Hackerangriffe in Österreich nimmt stetig zu. Die Experts Group IT-Security der Wirtschaftskammer Salzburg lädt am 11. November 2024 zum „UBIT Security-Talk Cyber Defense“ ein, um Unternehmen in Salzburg zu unterstützen, sich besser gegen diese Bedrohungen zu wappnen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*