Algorithmus erkennt Materialschäden bei Kernreaktoren

Neuer Ansatz bei der Erkennung und Analyse soll erfolgreicher sein als der Mensch. [...]

Neuer Ansatz erkennt winzige Defekte. (c) wisc.edu
Neuer Ansatz erkennt winzige Defekte. (c) wisc.edu

Forscher der University of Wisconsin-Madison haben in Zusammenarbeit mit Kollegen des Oak Ridge National Laboratory Computer trainiert, damit diese mikroskopisch kleine Strahlenschäden von Kernmaterialien erkennen. Bei dieser komplexen Aufgabe konnten die Computer ihre menschlichen Kontrahenten ausstechen. Diese Materialien sollen beim Design von Kernreaktoren zum Einsatz kommen.

Menschliche Analyse fehleranfällig

Maschinelles Lernen hat das große Potenzial, den gängigen Ansatz der mikroskopischen Analyse zu transformieren“, sagt Wei Li von der University of Wisconsin-Madison. Die Wissenschaftler haben maschinelles Lernen eingesetzt, um Künstliche Intelligenz (KI) für die Analyse von Schäden potenzieller Kernmaterialien noch besser zu wappnen als das menschliche Personal. Beim maschinellen Lernen kommen statistische Methoden zur Anwendung, welche die Computer bei der Verbesserung ihrer Performance anleiten, ohne dass ein menschliches Zutun erforderlich ist.

Bisher waren Bildverarbeitungsalgorithmen immer von menschlichen Programmierern abhängig, die explizite Deskriptoren der Identifizierungsmerkmale eines Objektes zur Verfügung stellen. „Die Analyse und Identifikation durch einen Menschen ist fehleranfällig, inkonsistent und ineffektiv“, schildert Dane Morgan von der University of Wisconsin-Madison.

Trefferquote von 86 Prozent

Die Wissenschaftler haben sich das maschinelle Lernen zunutze gemacht, um die Bilder der Elektronenmikroskopie rasch zu durchforsten. Dabei wurden Materialien unter die Lupe genommen, die zuvor einer Strahlung ausgesetzt worden waren, um einen eigenen Schädigungstypus festzustellen. Das Forschungsteam hat ein neuronales Netzwerk in Kombination mit einem maschinellen Lern-Algorithmus darin trainiert, diesen speziellen Schaden, die sogenannten Versetzungen, zu erkennen. In


Mehr Artikel

News

Bad Bots werden immer menschenähnlicher

Bei Bad Bots handelt es sich um automatisierte Softwareprogramme, die für die Durchführung von Online-Aktivitäten im großen Maßstab entwickelt werden. Bad Bots sind für entsprechend schädliche Online-Aktivitäten konzipiert und können gegen viele verschiedene Ziele eingesetzt werden, darunter Websites, Server, APIs und andere Endpunkte. […]

Frauen berichten vielfach, dass ihre Schmerzen manchmal jahrelang nicht ernst genommen oder belächelt wurden. Künftig sollen Schmerzen gendersensibel in 3D visualisiert werden (c) mit KI generiert/DALL-E
News

Schmerzforschung und Gendermedizin

Im Projekt „Embodied Perceptions“ unter Leitung des AIT Center for Technology Experience wird das Thema Schmerzen ganzheitlich und gendersensibel betrachtet: Das Projektteam forscht zu Möglichkeiten, subjektives Schmerzempfinden über 3D-Avatare zu visualisieren. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*