Cloud-Services dienen eher zum Sammeln von Daten statt als Basis für Maschinelles Lernen

Eine aktuelle Studie kommt zu dem Ergebnis, dass viele Unternehmen zwar enorme Datenmengen sammeln, auf das Verarbeiten dieser Daten aber gar nicht vorbereitet sind. [...]

Viele Unternehmen sammeln inzwischen enorme Datenmengen. Was sie mit den Datenbergen tun sollen, wissen sie aber oft noch nicht so genau. (c) Fotolia/Production Perig
Viele Unternehmen sammeln inzwischen enorme Datenmengen. Was sie mit den Datenbergen tun sollen, wissen sie aber oft noch nicht so genau. (c) Fotolia/Production Perig

Laut einer unabhängigen Studie im Auftrag der Exasol AG, Hersteller von analytischen In-Memory-Datenbanksystemen, haben 30 Prozent der Unternehmen in On-Demand-Cloud-Services investiert, um Funktionalitäten in den Bereichen künstliche Intelligenz (KI) und maschinelles Lernen (ML) auszubauen. Laut der Studie Driving The Rise of AI and ML with Data halten 48 Prozent der befragten Unternehmen Maschinelles Lernen zukünftig für sehr wichtig, dicht gefolgt von Künstlicher Intelligenz. Als Hauptgrund dafür gaben 64 Prozent der Unternehmen an, dass sie Predictive Analytics einsetzen möchten. Dieses Verfahren basiert auf Maschinellem Lernen, analysiert umfangreiche Datensätze und trifft Vorhersagen für zukünftige Ereignisse.

Trotz der Konzentration auf bessere ML- und KI-Funktionalitäten fördert die Studie auch zutage, dass die Unternehmen zwar enorme Datenmengen sammeln, auf das Verarbeiten dieser Daten aber gar nicht vorbereitet sind. 37 Prozent der Unternehmen haben sogar in Cloud-Dienste investiert, um ausschließlich ihre Daten zu speichern und zu konsolidieren. Lediglich 30 Prozent nutzen die elastische Skalierbarkeit von Cloud-Anbietern wie AWS und Azure, um auch tatsächlich Wert aus ihren Daten zu generieren.

Mathias Golombek, CTO bei Exasol kommentiert: „Ich bin überrascht, dass nur so wenige Unternehmen Cloud-Infrastrukturen tatsächlich für ML und KI einsetzen, obwohl dies viele Vorteile hätte. Es scheint, dass viele Unternehmen das Potenzial ihrer Daten noch nicht erkannt haben: Sie investieren in die Cloud, um diese dann doch nur für passive Datendienste zu nutzen. Dabei könnten die flexibel skalierbaren Rechenleistungen helfen, um mittels Maschinellem Lernen ihr Business zu optimieren. Es ist deshalb umso wichtiger, dass die Verarbeitung von Daten auch über hybride IT-Standorte hinweg erfolgen kann, um Daten-Silos zu vermeiden. Denn diese verhindern ansonsten, dass innovative Anwendungen wie Predictive Analytics die Unternehmen datenbasiert unterstützen.“

Unabhängig von den Infrastrukturfragen zeigt die Studie auf, dass die Unternehmen die Datenverarbeitung zumindest immer ernster nehmen. 46 Prozent der Befragten haben bereits in Services zur Verbesserung der Datenqualität und -verarbeitung investiert, um ihre Daten passend für ML- und KI-Anwendungen aufzubereiten.

Mathias Golombek fügt hinzu: „Mit Maschinellem Lernen zu beginnen, ist einfacher als viele befürchten, und es ist ermutigend zu sehen, dass Unternehmen die Qualität ihrer Daten mittlerweile verbessern – denn dies ist eine entscheidende Voraussetzung. Nur qualitativ hochwertige Daten bilden die Grundlage für solche lernenden Systeme. Die Cloud bietet hierbei Projektleitern die Möglichkeit, die Infrastruktur nach und nach zu skalieren und Kompetenzen für Pilotprojekte oder langfristige Programme aufzubauen.“


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*