Computer-Tool lernt Holzanatomie hochpräzise

Wissenschaftler wollen mit ausgeklügelter Software Verfolgung illegaler Abholzung erleichtern. [...]

Ein Deep-Learning-Ansatz hat die Erkennungsrate der genauen Holzart auf bis zu 96,4 Prozent gesteigert. (c) Pixabay
Ein Deep-Learning-Ansatz hat die Erkennungsrate der genauen Holzart auf bis zu 96,4 Prozent gesteigert. (c) Pixabay

Für die Strafverfolgung illegaler Abholzung bedarf es einer genauen Identifikation von Hölzern. Doch entsprechende Experten, sogenannte Holzanatomen, sind rar. Daher arbeiten Informatiker des Leiden Institute of Advanced Computer Science (LIACS) mit dem Naturalis Biodiversity Center und internationalen Experten an einem Computer-Tool, das Holzanatomie lernt, um dann Hölzer präziser als je zuvor zu bestimmen.

Computer-Expertise

Holzanatomie ist die wichtigste Methode, Holzstämme zu identifizieren. Doch es dauert Jahre, ehe ein Experte die Eigenheiten verschiedener Hölzer wirklich gut kennt. Zudem können Holzanatomen oft nur Genus und nicht die genaue Art von Holz bestimmen, was für eine Verfolugung nach dem Übereinkommen über den internationalen Handel mit gefährdeten Arten freilebender Tiere und Pflanzen (CITES) nicht reicht. Daher arbeiten die Experten mit Informatikern an schnelleren und genaueren computergestützte Tools zur Bestimmung von Holzproben.

Bei einer bestehenden Datenbank von je 20 mikroskopischen Querschnittsbilden für 112 erfasste Holzarten klassifizierten die Forscher die Bilder anhand vom Computer extrahierter Merkmale. Dabei hat ein Deep-Learning-Ansatz die Erkennungsrate der genauen Art auf bis zu 96,4 Prozent gesteigert. Die Forscher orten also die Möglichkeit, die Fotodatenbank um alle Hölzer auf der CITES-Liste gefährdeter Arten sowie um holzanatomisch ähnliche Arten zu erweitern. Diese Referenzdatenbank soll dann die Grundlage für ein Tool bilden, das Zollbehörden und anderen Organisationen eine genauere Identifikation von Hölzern erlaubt, als das dies selbst erfahrene Holzanatomen schaffen.

Forensischer Meilenstein

Ein solches Tool könnte den Kampf gegen illegale Abholzung wesentlich erleichtern, besonders wenn diese der Gewinnung von geschützten Edelhölzern dient. Auch diese trägt zur ständig zunehmenden Entwaldung besonders der weltweiten Regenwälder bei, führt aber bislang selten zu tatsächlicher Strafverfolgung – eben weil es bislang kaum effektive forensische Mittel zur ausreichend genauen Identifikation von Hölzern gibt.


Mehr Artikel

Udo Würtz, Fellow und Chief Data Officer, Fujitsu European Platform Business (c) Fujitsu
News

Fujitsu Private GPT: Die Kontrolle bleibt im Haus

Mit der zunehmenden Verbreitung generativer KI-Lösungen stehen Unternehmen vor neuen Herausforderungen. Datenschutz, Kostenkontrolle und regulatorische Anforderungen rücken in den Fokus. Fujitsu hat mit „Private GPT“ eine Lösung entwickelt, die speziell auf die Bedürfnisse von Unternehmen zugeschnitten ist und höchste Sicherheitsstandards erfüllt. ITWelt.at hat darüber mit Udo Würtz, Fellow und Chief Data Officer, Fujitsu European Platform Business, gesprochen. […]

News

Cyber-Immunität statt reaktive Maßnahmen

Das Konzept der „Cyber Immunity“ beschreibt IT- und OT-Systeme, die aufgrund speziellerer Entwicklungsmethoden und architektonischer Anforderungen „secure-by-design“ sind und über eine eingebaute Widerstandsfähigkeit gegenüber Cyberangriffen verfügen. […]

News

42 Prozent der Österreicher:innen sind gestresst im Job 

41,5 Prozent der Arbeitnehmer:innen sind bei der Arbeit gestresst. Zudem sagt in einer Studie von kununu nur rund jede dritte angestellte Person (35,7 Prozent) in Österreich, dass ihr Arbeitsplatz eine gesunde Work-Life-Balance sowie das mentale oder körperliche Wohlbefinden unterstützt oder aktive Pausen fördert. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*