Datenwissenschaft: Die besten Data-Science-Ressourcen

Data Scientists werden für Unternehmen immer wichtiger. Diese kostenlosen Ressourcen informieren Sie über die spannende und sehr gut bezahlte Tätigkeit des Datenwissenschaftlers. [...]

Der Beruf des Datenwissenschaftlers ist nicht nur hochspannend und zukunftssicher, sondern gehört aktuell auch zu den bestbezahlten IT-Jobs (c) pixabay.com

Data Scientists ziehen mithilfe von Methoden, Prozessen, Algorithmen und Systemen Erkenntnisse und Schlüsse aus strukturierten und unstrukturierten Daten. Aus großen Datenmengen generieren die Datenwissenschaftler so Informationen und leiten Handlungsempfehlungen für das Unternehmen ab, damit dieses zukünftig effizienter arbeiten kann. Trotz oder vielleicht auch gerade wegen der hohen Nachfrage besteht aktuell ein Mangel an Data Scientists.

Vielleicht haben Sie sogar schon selbst überlegt, sich in Richtung Data Science weiterzubilden. Die gute Nachricht ist: Im Netz gibt es viele hilfreiche kostenlose Ressourcen, die es Ihnen ermöglichen, sich über Data Science zu informieren. Um da nicht den Überblick zu verlieren, haben wir für Sie die 15 besten und kostenlosen Ressourcen zusammengestellt – sowohl für Einsteiger als auch „alte Hasen“ in Data Science.

Level 1 – Die Grundlagen

Zunächst ist es wichtig, sich die grundlegenden Konzepte von Data Science anzueignen. Dazu gehören neben der Programmiersprache Python auch mathematische Grundlagen. Hier fünf ganz unterschiedliche Ressourcen, von Spielfilmen bis hin zu einem Online-Kurs:

  1. Für den spielerischen Einstieg empfehlen wir den Film Moneyball mit Brad Pitt und Jonah Hill. Der Film zeigt eindrucksvoll, welche Bereiche des täglichen Lebens durch Datenanalysen beeinflusst werden können.
  2. Data Science beruht auf Mathematik. Alles, was zukünftige Data Scientists über Mathematik wissen müssen, hat Hadrien Jean auf seinem Blog hadrienj.github.io zusammengetragen.
  3. Grundvoraussetzung um Data Scientist zu werden, ist außerdem die Programmiersprache Python. Auf Dataquest.io kann jede:r ohne Vorkenntnisse R, Python und SQL ganz einfach online lernen.
  4. Einen ganzheitlichen Kurs zum Thema Data Science findet man bei Julien Beaulieu unter julienbeaulieu.github.io. Julien stellt Interessierten ein wirklich umfangreiches Curriculum mit Online-Ressourcen vor. Ziel: Eine umfassende Bildung im Bereich Data Science.
  5. Wer lieber visuell lernt, ist bei Josh Starmers YouTube-Kanal StatQuest with Josh Starmer genau richtig. Josh unterteilt das komplexe Thema Data Science in kleine und leicht verständliche Schritte, um so langsam aber sicher ein Verständnis für das Thema aufzubauen.

Level 2 – Mehr erfahren

Sobald Sie die Grundlagen der Data Science verstanden haben, können Sie tiefer in die Materie eintauchen, aus der Praxis lernen und spannende Projekte nachvollziehen. Hier geht es vor allem darum, das vorhandene Wissen zu vertiefen und zu ergänzen.

  1. Mit dem Data Science Weekly-Newsletter ist man immer auf den neuesten Stand in Sachen Data Science. Wöchentlich werden aktuelle Meldungen, Artikel und Jobangebote an die Abonnent:innen versendet. Noch mehr Artikel und Interviews gibt es auf der Webseite.
  2. Um die erlernten Mathematikkenntnisse aus Level 1 zu vertiefen, bietet sich der YouTube-Kanal 3Blue1Brown von Grant Sanderson an. Die Videos sind eine Mischung aus Mathematik und Unterhaltung. Ziel ist es, schwierige Sachverhalte mit der Hilfe von Animationen leicht verständlich darzustellen.
  3. Fortgeschrittene Data Scientists kommen nicht darum herum, sich mit Deep Learning zu beschäftigen. Data Scientist Jeremy Howard versucht mit fast.ai durch Kurse für Programmierer, eine Software-Bibliothek, eigene Forschung und mit einem ausgeprägten Community-Aspekt, Deep Learning einfach zugänglich zu machen.
  4. Ein weiterer Online-Kurs ist der MIT Deep Learning-Kurs. Hier geht es um Deep-Learning-Methoden mit Anwendungen unter anderem in den Bereichen Computer Vision, Natural Language und Biologie. Teilnehmer:innen erlernen die Grundlagen der Deep-Learning-Algorithmen und sammeln praktische Erfahrung beim Aufbau neuronaler Netze.
  5. Wer seine Zeit möglichst effektiv nutzen will oder am besten über das Hören lernt, kann auf den Podcast von OCDevel zurückgreifen. Auch hier dreht sich alles um das Thema Machine Learning.

Level 3 – Am Ball bleiben

Die Welt der Data Science ist ständig in Bewegung. Deswegen ist es für Data Scientists besonders wichtig, immer auf dem neuesten Stand zu bleiben und Neues dazu zu lernen.

  1. Der Dataskeptic-Podcasts bringt wöchentlich eine neue Folge raus, in denen führende Experten über Data Science, Machine Learning und KI reden.
  2. PyCon ist das größte jährlich stattfindende Treffen der Python-Community. Die Konferenz wird aus der Python-Community heraus organisiert. Auf dem YouTube-Kanal PyCon findet man Mitschnitte von Konferenzbeiträgen aus der ganzen Welt.
  3. Der Blog ML in Production stellt Best Practices für den Einsatz von Machine Learning vor. Ziel ist es, durch anwendungsnahe Beispiele Data Scientists, Machine-Learning-Ingenieur:innen und KI-Produktmanagern dabei zu helfen, Machine-Learning-Systeme zu bauen und zu nutzen.
  4. Der TWIML AI Podcast beschäftigt sich mit Machine Learning und KI. Machine Learning und KI haben die Arbeitswelt drastisch verändert, der Podcast gibt den neuesten Trends in Person von Wissenschaftler:innen, Data Scientists und Entscheider:innen in der IT eine Stimme.
  5. Sebastian Ruder, ein Wissenschaftler im Bereich Natural Language Processing, bloggt auf ruder.io über Machine Learning, Deep Learning und Natural Language Processing. Der Blog ist besonders geeignet für Data Science Expert:innen, die auf dem neuesten Stand der Forschung bleiben wollen. 

*Richard O’Grady ist Country Manager Deutschland bei Le Wagon, einem internationalen Anbieter von Coding Bootcamps.


Mehr Artikel

News

KI ist das neue Lernfach für uns alle

Die Mystifizierung künstlicher Intelligenz treibt mitunter seltsame Blüten. Dabei ist sie weder der Motor einer schönen neuen Welt, noch eine apokalyptische Gefahr. Sie ist schlicht und einfach eine neue, wenn auch höchst anspruchsvolle Technologie, mit der wir alle lernen müssen, sinnvoll umzugehen. Und dafür sind wir selbst verantwortlich. […]

Case-Study

Erfolgreiche Migration auf SAP S/4HANA

Energieschub für die IT-Infrastruktur von Burgenland Energie: Der Energieversorger hat zusammen mit Tietoevry Austria die erste Phase des Umstieges auf SAP S/4HANA abgeschlossen. Das burgenländische Green-Tech-Unternehmen profitiert nun von optimierten Finanz-, Logistik- und HR-Prozessen und schafft damit die Basis für die zukünftige Entflechtung von Energiebereitstellung und Netzbetrieb. […]

FH-Hon.Prof. Ing. Dipl.-Ing. (FH) Dipl.-Ing. Dr. techn. Michael Georg Grasser, MBA MPA CMC, Leiter FA IT-Infrastruktur der Steiermärkischen Krankenanstaltengesellschaft m.b.H. (KAGes). (c) © FH CAMPUS 02
Interview

Krankenanstalten im Jahr 2030

Um sich schon heute auf die Herausforderungen in fünf Jahren vorbereiten zu können, hat die Steiermärkische Krankenanstaltengesellschaft (KAGes) die Strategie 2030 formuliert. transform! sprach mit Michael Georg Grasser, Leiter der Fachabteilung IT-Infrastruktur. […]

News

Risiken beim Einsatz von GenAI in vier Schritten senken

Die Themen Datenschutz und Modellverwaltung sind in der Datenwissenschaft zwar nicht neu, doch GenAI hat ihnen eine neue Dimension der Komplexität verliehen, die Datenschutzbeauftragte vor neue Herausforderungen stellt. Die Data-Science-Spezialisten von KNIME haben die Potenziale und Risiken der KI-Nutzung beim Einsatz bei der Datenarbeit zusammengefasst und empfehlen vier Schritte zur Risikominimierung. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*