Industrie 4.0 ohne künstliche Intelligenz? Das scheint undenkbar, denn gerade Machine Learing wird als eine Methode propagiert, um große Datenmengen zu bewältigen. Ein anderer Ansatz ist die Operational Intelligence (OI), die für transparente Prozesse sorgen soll. [...]
Dies könnten etwa klassische Abläufe im Kerngeschäft eines Fertigers sein: Wertschöpfungsketten werden intelligent und umfassen zunehmend sämtliche Phasen des Lebenszyklus eines Produkts – von der Idee über die Entwicklung, bis hin zur Produktion, Nutzung, Wartung und dem Recycling. Liegen beispielsweise alle Informationen für einen Fertigungsprozess transparent vor, so kann ein Hersteller frühzeitig auf Qualitätsprobleme bei bestimmten Produktionschargen reagieren. Auf Grundlage der konsolidierten und ausgewerteten Informationen kann die Geschäftsführung dann auf unvorhergesehene Abweichungen reagieren. Ein anderes Einsatzgebiet ist etwa die Untersuchung der Interaktionen mit Kunden, um auf zunehmende Kundenbeschwerden zu reagieren oder einen Rückgang der E-Commerce-Geschäfte erklären zu können.
In Verbindung mit Maschinendaten bietet sich der OI-Einsatz auch in der IT selbst an. Informationen aus verschiedenen IT-Systemen wie Web-Servern oder Infrastruktur-Komponenten sowie Netzwerkdaten oder Cloud-Service-Informationen können mit OI für die Fehlersuche und Performance-Steigerung verwendet werden. Nach der Auswertung dieser Daten lässt sich eine Ursachenforschung betreiben, um künftig auf Vorfälle, Ausfälle und andere Probleme reagieren zu können. Mit dieser Echtzeit-Berichterstattung aus den „Maschinenräumen“ einer Organisation sind IT-Manager in der Lage, eine serviceorientierte Sicht auf ihre IT-Umgebung zu entwickeln. So lassen sich On-the-Fly-Berichte und Datenvisualisierungen nutzen, die einen Überblick über die Geschehnisse aus unterschiedlichen Perspektiven ermöglichen.
Die OI-Plattformen selbst sammeln und indizieren zunächst Informationen aus unterschiedlichen Quellen, bevor eine Analyse vorgenommen werden kann. Beim Sammeln sollten sowohl physische als auch virtuelle Umgebungen sowie Cloud-Umgebungen einbezogen werden. In Industrie-4.0-Szenarien kommen dann häufig noch Inhalte aus Sensoren und Microcontrollern von Produktionssystemen hinzu sowie Informationen aus strukturierten Datenbanken. Für die Einspeisung der Daten dienen in der Regel so genannte Forwarder, die sich direkt in den Datenquellen befinden. Darüber hinaus lassen sich DevOps-, IoT- und andere Daten über Applikationsschnittstellen (APIs) integrieren.
* Matthias Maier ist Senior Product Marketing Manager bei Splunk und fungiert als Technical Evangelist in der EMEA-Region.
Be the first to comment