Einfachere neuronale Netze öffnen neues KI-Kapitel

Neue Ergebnisse aus der Forschung zu Künstlicher Intelligenz (KI) zeigen, dass man mit einfacheren, kleineren neuronalen Netzen bestimmte Aufgaben noch besser, effizienter und zuverlässiger lösen kann als bisher. [...]

Fallbeispiel Autonomes Fahren: Mit kleinerem neuronalen Netz Steuerung des Autos geschafft. (c) Video TU Wien/IST Austria/MIT

Ein Forschungsteam der TU Wien, des IST Austria und des MIT (USA) hat eine neue Art von KI entwickelt, die sich an biologischen Vorbildern orientiert, etwa an einfachen Fadenwürmern. Das neue KI-Modell kann ein Fahrzeug mit einer verblüffend kleinen Zahl an künstlichen Neuronen steuern. Das System hat entscheidende Vorteile gegenüber bisherigen Deep-Learning-Modellen: Es kommt mit „unsauberen“ Eingabedaten viel besser zurecht, und aufgrund seiner Einfachheit kann man seine Funktionsweise im Detail erklären. Man muss es nicht einfach als komplexe „Black Box“ betrachten, sondern es kann von Menschen verstanden werden. Dieses Deep-Learning-Modell wurde nun im Journal „Nature Machine Intelligence“ publiziert.

Beobachtung und Know-how der Natur hilft

Ähnlich wie lebendige Gehirne bestehen Neuronale Netze am Computer aus vielen einzelnen Zellen. Wenn eine Zelle aktiv ist, sendet sie ein Signal an andere Zellen. Alle Signale, die die nächste Zelle erhält, entscheiden gemeinsam darüber, ob diese Zelle ebenfalls aktiv wird. Auf welche Weise eine Zelle die Aktivität der nächsten genau beeinflusst, ist zunächst offen – diese Parameter werden in einem automatischen Lernprozess so lange angepasst, bis das neuronale Netzwerk eine bestimmte Aufgabe lösen kann.

„Schon seit Jahren dachten wir darüber nach, was man von der Natur lernen kann, um künstliche neuronale Netze zu verbessern“, sagt Prof. Radu Grosu, Leiter der Forschungsgruppe „Cyber-Physical Systems“ an der TU Wien. „Der Fadenwurm C. elegans zum Beispiel kommt mit einer verblüffend kleinen Zahl von Nervenzellen aus, und trotzdem zeigt er interessante Verhaltensmuster. Das liegt an der effizienten und harmonischen Art, wie sein Nervensystem Information verarbeitet.“

„Die Natur zeigt uns, dass man in der KI noch vieles verbessern kann“, betont Prof. Daniela Rus, Direktorini des Computer Science and Artificial Intelligence Laboratory (CSAIL) am MIT. „Daher war es unser Ziel, die Komplexität massiv zu reduzieren, und die Interpretierbarkeit des neuronalen Netzes zu verbessern.“ Prof. Thomas Henzinger, Präsident von IST Austria, ergänzt: „Inspiriert von der Natur haben wir neue mathematische Modelle für Neuronen und Synapsen entwickelt.“

„Die Verarbeitung der Signale innerhalb der einzelnen Zellen gehorcht bei uns anderen mathematischen Regeln als bei bisherigen Deep Learning Modellen“, erklärt Ramin Hasani, Postdoc am Institut für Computer Engineering der TU Wien und am CSAIL, MIT. „Außerdem wurde nicht jede Zelle mit jeder anderen verbunden – auch das macht das Netz einfacher.“

Fallbeispiel Autonomes Fahren

Um die neuen Ideen zu testen, wählte das Team eine besonders wichtige Testaufgabe: Das Spurhalten beim autonomen Fahren. Das neuronale Netz bekam als Input ein Kamerabild der Straße und sollte daraus automatisch entscheiden, ob man nach rechts oder nach links lenken musste. „Für Aufgaben wie Autonomes Fahren verwendet Deep Learning heute oft Modelle mit Millionen an Parametern“, sagt Mathias Lechner, TU Wien Absolvent und PhD-Student am IST Austria. „Unser neuer Zugang macht es möglich, die Größe des Netzwerks um gleich zwei Größenordnungen zu reduzieren. Unsere Systeme kommen mit 75.000 trainierbaren Parametern aus.“

Alexander Amini, PhD-Student am CSAIL, MIT, und dritter Jung-Forscher im Bunde, erklärt, dass das neue System aus zwei Teilen besteht: Der Kamera-Input wird zunächst von einem sogenannten konvolutionalen Netzwerk verarbeitet, das die visuellen Daten nur wahrnimmt, um in den Pixeln strukturelle Bildeigenschaften zu erkennen. Das Netzwerk entscheidet, welche Teile des Kamerabilds interessant und wichtig sind und gibt dann Signale an den eigentlich entscheidenden Teil des Netzwerks weiter – an das Kontrollsystem, das dann das Fahrzeug lenkt.

Beide Teilsysteme werden zunächst gemeinsam trainiert. Viele Stunden an Verkehrs-Videos von menschgesteuerten Autofahren in der Gegend von Boston wurden gesammelt und in das Netzwerk gefüttert, gemeinsam mit der Information, wie das Auto in den jeweiligen Situationen gesteuert werden soll – so lange, bis das System die richtige Verknüpfung von Bild und Lenkrichtung gelernt hat und selbstständig auch mit neuen Situationen umgehen kann. Das Kontrollsystem des neuronalen Netzwerks (genannt „neural circuit policy“, oder NCP), das die Daten aus dem visuellen Netz in einen Steuerungsbefehl übersetzt, besteht nur aus 19 Zellen. Mathias Lechner erklärt: „Diese NCPs sind um drei Größenordnungen kleiner als es mit bisherigen State-of-the-art-Modellen möglich wäre.“

Vorteil eins: Interpretierbarkeit

Das neue Deep-Learning-Modell wurde in einem echten autonomen Fahrzeug getestet. „Unser Modell erlaubt uns, genau zu untersuchen, worauf das Netzwerk beim Fahren seine Aufmerksamkeit richtet. Es konzentriert sich auf ganz bestimmte Bereiche des Kamerabildes: Auf den Straßenrand und den Horizont. Dieses Verhalten ist höchst erwünscht, und es ist einzigartig bei Systemen, die auf künstlicher Intelligenz beruhen“, sagt Ramin Hasani. „Außerdem haben wir gesehen, dass sich die Rolle jeder einzelnen Zelle bei jeder einzelnen Entscheidung identifizieren lässt. Wir können die Funktion der Zellen verstehen und ihr Verhalten erklären. Dieses Maß an Interpretierbarkeit ist in größeren Deep Learning Modellen unmöglich.“

Vorteil zwei: Robustheit

„Um zu testen, wie robust unsere NCPs im Vergleich zu bisherigen Deep Learning Modellen sind, haben wir die Bilder künstlich verschlechtert und analysiert, wie gut das System mit Bildrauschen zurechtkommt“, sagt Mathias Lechner. „Während das für andere Deep Learning Netzwerke zum unlösbaren Problem wurde, ist unser System sehr widerstandsfähig gegenüber Artefakten beim Input. Diese Eigenschaft ist eine direkte Folge des neuartigen Modells und seiner Architektur.“

Vorteil drei: Trainingsdauer reduzierbar, breite Anwendungsfelder

„Interpretierbarkeit und Robustheit sind die zwei entscheidenden Vorteile unseres neuen Modells“, sagt Ramin Hasani. „Aber es gibt noch mehr: Durch unsere neuen Methoden können wir die Dauer des Trainings reduzieren und schaffen die Möglichkeit, künstliche Intelligenz in relativ einfachen Systemen zu implementieren. Unsere NCPs machen imitierendes Lernen in einem weiten Anwendungsbereich möglich, von automatisierter Arbeit in Lagerhallen bis hin zur Bewegungssteuerung von Robotern. Die neuen Ergebnisse eröffnen wichtige neue Perspektiven für die AI-Community: Die Grundlagen der Datenverarbeitung in biologischen Nervensystemen sind eine großartige Wissensressource um high-performance interpretierbare künstliche Intelligenz zu erzeugen – als Alternative zu den Black-Box-Machine-Learning Systemen, die wir bisher kannten.“ Hier gibt es ein anschauliches Video zum Projekt.


Mehr Artikel

News

Lauf-Apps als Sicherheitsrisiko

Lauf-Apps sammeln Informationen über das eigene Training und tracken somit alle Fortschritte, die man beim Laufen gemacht hat. Allerdings benötigen sie um richtig zu funktionieren präzise Daten, darunter auch den Standort von Nutzern.
Diese Daten stehen oft öffentlich zur Verfügung. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*