Forscher der Abteilung für Künstliche Intelligenz von Facebook haben eine Methode namens "Radioaktive Daten" entwickelt, um Bilder aus Datensets, die für Machine Learning verwendet werden, wie bei einem Wasserzeichen zu markieren. [...]
Dadurch soll es möglich sein, in neuralen Netzwerken bestimmte Lernmethoden immer wieder zu erkennen. Diese Methode hilft laut den Forschern dabei, Fehler und Missbrauch bei der Datenanalyse schnell aufzudecken.
„Radioaktive Daten“
Facebook bezeichnet die markierten Bilder als „radioaktive Daten„, weil die Entwickler damit an Medikamente mit ungefährlichen Mengen von Radioaktivität anspielen, die unter anderem Röntgen-Untersuchungen genauer machen. „Wir haben einzigartige Markierungen entwickelt, die harmlos sind und keinen Einfluss auf die Effektivität von Lernmodellen haben. Sie sind jedoch immer präsent und in einem neuralen Netzwerk leicht zu entdecken“, schreiben die Forscher.
In „radioaktiven“ Datensets befindet sich ein Bild, das mit einem für das menschliche Auge unsichtbaren Filter bearbeitet wurde. Die Markierung zeigt sich als eine Art leichtes Flimmern, das über das Bild gelegt wird und nur von neuralen Netzwerken erkannt wird. Das auf diese Art gezeichnete Bild wird als Original getarnt im Datenset eingeschleust.
Oft Fehler in Bildanalyse
Benutzt eine KI unerlaubterweise ein bestehendes Datenset für sein Lernmodell, erkennt das Facebook–Netzwerk dies anhand der Markierung sofort. „Radioaktive“ Daten helfen laut den Forschern dabei, die Lernmethoden von anderen KI–Entwicklern sowie deren Fehler und möglichen Missbrauch zu erkennen. Kritiker von KI–Anwendungen haben festgestellt, dass Bild- und Gesichtserkennung oft auf teils mit Vorurteilen behafteteten und sogar rassistisch geprägten Datensets basieren.
Be the first to comment