Fünf Trends für das Datenmanagement in 2024

Im kommenden Jahr werden Unternehmen ihr Augenmerk stärker als bisher auf ihre Datenmanagementstrategie legen müssen. [...]

Otto Neuer, Regional VP und General Manager bei Denodo (Quelle: Denodo Technologies)

Sie sind oft immer noch nicht in der Lage, das Optimum aus ihren Daten herauszuholen, gleichzeitig laufen die Speicherkosten zunehmend aus dem Ruder. Ein Grund hierfür: der zentralisierte Ansatz, den viele noch verwenden, der angesichts der Massen an verteilten Daten aber nicht mehr praktikabel ist. Otto Neuer, Regional VP und General Manager bei Denodo, erläutert, mit welchen fünf Entwicklungen Unternehmen sich deshalb 2024 auseinandersetzen müssen.

1. Anti-Datengravitation setzt sich durch

Daten haben eine Art Anziehungskraft – neue Daten sowie begleitende Dienste hängen sich oft an bestehende große Datenbestände an. Doch Unternehmen erkennen zunehmend, dass zentrale Repositories wie Data Warehouses und Data Lakes, in denen dies geschieht, mehr neue Probleme schaffen, als sie alte lösen. Denn die meisten Datenlandschaften bestehen aus lokalen als auch Cloud-Systemen verschiedener Anbieter, die zudem oft geografisch verteilt sind.

Aus diesem Grund, aber auch wegen steigender Kosten für die Replikation von Daten, Fragen der Datenhoheit, lokaler Gesetze und Vorschriften zum Datenmanagement sowie der Notwendigkeit schneller Insights, wird Anti-Datengravitation im Jahr 2024 und darüber hinaus die Norm werden. IT-Verantwortliche sollten daher in Technologien investieren, die auf der Prämisse des verteilten Datenmanagements aufbauen.

2. Datenprodukte gewinnen an Bedeutung

2024 bringt außerdem den Durchbruch für Data Mesh, bei dem die verteilte Natur von Daten von vornherein berücksichtigt wird. Ein Data Mesh ist um verschiedene Datendomänen herum organisiert, deren Daten von den jeweiligen primären Business Usern verwaltet werden. Das heißt, die IT muss künftig vor allem die Grundlagen für die Arbeit der Datendomänen – der Erstellung und Verteilung von Datenprodukten – bereitstellen.

Entscheidend sind hierbei Datenkataloge, die Rohdaten in Form von verlässlichen, konsumierbaren Data-Assets bereitstellen. Im Sinne der Nutzererfahrung werden Anbieter von Datenplattformen außerdem Funktionen wie personalisierte Empfehlungen und beliebte Produkthighlights bieten und gleichzeitig durch Nutzerempfehlungen sowie Transparenz hinsichtlich der Datenherkunft Vertrauen schaffen.

Darüber hinaus werden diese Plattform Echtzeitabfragen direkt aus dem Datenkatalog ermöglichen und interaktive Feedbackschleifen für Nutzeranfragen, Datenanforderungen und Änderungen einrichten.

3. Der Erfolg von GenAI wird von der Datenarchitektur abhängen

Unternehmen werden sich bei der Implementierung von generativer künstlicher Intelligenz (GenAI) und Large Language Models (LLMs) mit zahlreichen Herausforderungen konfrontiert sehen, etwa mit Blick auf die Datenqualität, der Governance, der Einhaltung ethischer Grundsätze und des Kostenmanagements.

Jedes Hindernis steht in direktem oder indirektem Zusammenhang mit der übergreifenden Datenmanagementstrategie der Unternehmen – ob es darum geht, die Integrität der in KI-Modelle eingespeisten Daten zu gewährleisten oder eine reibungslose Integration in bestehende Systeme zu ermöglichen.

Vor diesem Hintergrund ist eine robuste Datenarchitektur eine Notwendigkeit. Qualitativ hochwertige, gut verwaltete Daten bilden das Fundament, auf dem diese fortschrittlichen Modelle arbeiten und haben erheblichen Einfluss auf die Zuverlässigkeit und ethische Compliance der Ergebnisse.

Unternehmen, die proaktiv in ein starkes Datenmanagement-Framework investieren, sind 2024 deshalb besser positioniert, um das volle Potenzial dieser Technologie zu erschließen.

4. Organisationen nehmen ihre Cloud-Kosten stärker in den Fokus

Im kommenden Jahr wird es für Unternehmen darum gehen, sowohl ihre steigenden Cloud-Kosten einzudämmen als auch einen hochwertigen Service und eine wettbewerbsfähige Performance zu gewährleisten. Steigen Kosten für Cloud-Hosting und -Datenmanagement hindern sie an einer effektiven Vorhersage und Budgetierung und die ehemals verlässlichen Kosten für die On-Premises-Datenspeicherung werden durch die volatilen Preisstrukturen der Cloud in den Hintergrund gedrängt.

Um dieser finanziellen Belastung zu begegnen, werden Unternehmen ihre Cloud-Ausgaben gründlich analysieren. Sie müssen dabei etwa die von Querys beanspruchte Rechenleistung und die damit verbundenen Datenausgangsvolumina in den Blick nehmen, die Nutzung von Datensätzen erfassen und ihre Speicherlösungen optimieren.

Diese Bemühungen werden durch die Einführung von Financial Operations (FinOps)-Prinzipien unterstützt, die finanzielle Rechenschaftspflicht mit dem flexiblen Kostenmodell der Cloud verbinden. Durch das kontinuierliche Monitoring ihrer Ausgaben, die zuverlässige Vorhersage von Kosten und die Implementierung von Best Practices bei der Cloud-Verwaltung erreichen Unternehmen ein Gleichgewicht zwischen Kosteneinsparungen und betrieblicher Effizienz.

5. Datensicherheit und Data Governance werden vereinfacht

Schlecht integrierte Daten beeinträchtigen die Agilität eines Unternehmens auf vielen Ebenen, aber vielleicht am stärksten wirken sie sich auf die Datensicherheit und die Data Governance aus. Da es Zeit kostet, unzählige isolierte Systeme einzeln zu aktualisieren, ist es unmöglich, alle Unternehmenssysteme gleichzeitig abzusichern und zu verwalten.

Um diese Herausforderung zu meistern, werden Unternehmen in 2024 verstärkt auf globale Richtlinien für diese Aspekte setzen. Entsprechende Sicherheitsrichtlinien können nicht auf Nutzerrollen angewendet werden, sondern auch auf Standorte, während sich mithilfe von Data-Governance-Richtlinien beispielsweise die Schreibweise bestimmter Wörter in den verschiedenen Systemen des Unternehmens standardisieren lässt.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*