Grafikkarten liefern Rechenpower für die Wissenschaft

Grafikkarten helfen nicht nur bei Grafikanwendungen - an der TU Wien untersucht man, wie man sie für hoch anspruchsvolle wissenschaftliche Anwendungen nutzen kann. Dafür wurde die Universität von NVIDIA als "Nvidia GPU Research Center" ausgezeichnet. [...]

Früher war die Sache klar: Der Prozessor des Computers war dazu da, um etwas auszurechnen, und die Grafikkarte, um etwas am Bildschirm darzustellen. Doch Grafikkarten (GPUs) werden immer leistungsfähiger, nicht zuletzt durch hohe Anforderungen von Computerspielen im 3D-Bereich. Daher kann man sie mittlerweile auch für ganz andere Dinge verwenden, zum Beispiel für wissenschaftliche Simulationsrechnungen.

Am Institut für Mikroelektronik der TU Wien werden Rechenmethoden entwickelt, mit denen man die speziellen Vorteile von Grafikkarten optimal für die Wissenschaft nutzen kann. Der Grafikkartenhersteller Nvidia zeichnet diese Leistungen in diesem Bereich nun aus, indem er das Forschungsteam von Karl Rupp zum „Nvidia GPU Research Center“ macht und auf vielfältige Weise unterstützt.

HOCHPARALLELES RECHNEN

„Das Besondere an Grafikkarten ist, dass sie hochgradig parallel rechnen können“, sagt Karl Rupp, der Leiter des GPU Research Centers. „Ein moderner Prozessor hat vielleicht vier Prozessoren, die gleichzeitig Rechenaufgaben lösen können, eine Grafikkarte hingegen kann tausende Threads gleichzeitig abarbeiten.“ Gerade Grafik-Berechnungen lassen sich oft sehr gut in Teilaufgaben zerlegen, die nicht aufeinander aufbauen, sondern gleichzeitig berechnet werden können. Bei anderen Rechenaufgaben hingegen kann man den nächsten Schritt immer erst ausführen, wenn der vorhergehende Schritt fertig berechnet worden ist. Solche Aufgaben sind dann von Grafikkarten nur schwer zu lösen. Ob eine Grafikkarte oder eine herkömmliche CPU schneller zu einem Rechenergebnis kommt, hängt von der Art der Rechenaufgabe ab.

Gemeinsam mit seinen Kollegen Josef Weinbub und Florian Rudolf arbeitet Karl Rupp an Rechenmethoden, durch die man die Vorteile von Grafikkarten auch für die Wissenschaft optimal nutzen kann. „Ältere Generationen von Grafikkarten konnten nur Zahlen mit einfacher Genauigkeit verarbeiten“, sagt Rupp. „Seit 2009 oder 2010 sind nun aber auch Grafikkarten mit doppelter Genauigkeit verfügbar, wie man sie für die meisten wissenschaftlichen Simulationsrechnungen braucht. Seither sind Grafikkarten für die Wissenschaft als Alternative zum gewöhnlichen Computerprozessor interessant.“ Grafikkartenhersteller wie Nvidia haben das erkannt und wollen ihre Produkte auch für Anwendungen in der Hochleistungs-Simulationsrechnung vermarkten.

OPEN SOURCE LIBRARY FÜR DIE WISSENSCHAFT

„Eigentlich haben wir als Anwender begonnen, nicht als Methodenentwickler“, sagt Karl Rupp. Am Institut für Mikroelektronik werden aufwändige Computersimulationen entwickelt, mit denen man Halbleitermaterialien und nanoelektronische Schaltungen rechnerisch untersuchen kann. Damit sich solche Rechnungen mit hoher Präzision und in möglichst kurzer Zeit lösen lassen, muss man aber auch über computertechnische und mathematische Grundlagen nachdenken.

„Wir entwickeln nun Algorithmen, mit denen man Grafikkarten optimal für wichtige mathematische Schritte wie etwa das Lösen von Gleichungssystemen verwenden kann“, erklärt Rupp. Diese Algorithmen bilden die „ViennaCL Library“ und werden gratis auf open-source-Plattformen zur Verfügung gestellt. Wer auch immer in Zukunft mit hochparallelen Grafikkarten rechnen will, kann auf die mathematischen Grundbausteine zurückgreifen, die an der TU Wien entwickelt wurden.

GPU RESEARCH CENTER

Die Firma Nvidia verleiht nun der Forschungsgruppe von Karl Rupp an der TU Wien (vorläufig für ein Jahr) den Status eines „Nvidia GPU Research Centers“. Das ist nicht bloß eine Auszeichnung für bisherige Leistungen, die TU Wien wird auch mit Hardware und speziellem technischen Support versorgt und wird Zugang zu besonderen Produkten und speziellen Veranstaltungen haben.

„Für uns ist das eine wunderbare Motivation, weiterhin die besten GPU-Codes für die wissenschaftliche Community zu entwickeln“, sagt Rupp. In Zukunft will man insbesondere an Algorithmen für die Verarbeitung großer Matrizen arbeiten, die man für finite Elemente-Methoden braucht – einer Familie von Methoden, die in den Ingenieurswissenschaften und der Industrie eine große Bedeutung erlangt hat. (pi/rnf)


Mehr Artikel

News

ISO/IEC 27001 erhöht Informationssicherheit bei 81 Prozent der zertifizierten Unternehmen

Eine Umfrage unter 200 Personen verschiedener Branchen und Unternehmensgrößen in Österreich hat erstmals abgefragt, inwiefern der internationale Standard für Informationssicherheits-Managementsysteme (ISO/IEC 27001) bei der Bewältigung von Security-Problemen in der Praxis unterstützt. Ergebnis: Rund 81 Prozent der zertifizierten Unternehmen gaben an, dass sich durch die ISO/IEC 27001 die Informationssicherheit in ihrem Unternehmen erhöht hat. […]

News

Public Key Infrastructure: Best Practices für einen erfolgreichen Zertifikats-Widerruf

Um die Sicherheit ihrer Public Key Infrastructure (PKI) aufrecht zu erhalten, müssen PKI-Teams, sobald bei einer Zertifizierungsstelle eine Sicherheitslücke entdeckt worden ist, sämtliche betroffenen Zertifikate widerrufen. Ein wichtiger Vorgang, der zwar nicht regelmäßig, aber doch so häufig auftritt, dass es sich lohnt, PKI-Teams einige Best Practices für einen effektiven und effizienten Zertifikatswiderruf an die Hand zu geben. […]

News

UBIT Security-Talk: Cyberkriminalität wächst unaufhaltsam

Jedes Unternehmen, das IT-Systeme nutzt, ist potenziell gefährdet Opfer von Cyberkriminalität zu werden, denn die Bedrohung und die Anzahl der Hackerangriffe in Österreich nimmt stetig zu. Die Experts Group IT-Security der Wirtschaftskammer Salzburg lädt am 11. November 2024 zum „UBIT Security-Talk Cyber Defense“ ein, um Unternehmen in Salzburg zu unterstützen, sich besser gegen diese Bedrohungen zu wappnen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*