Dokumente mittels Künstlicher Intelligenz klassifizieren

Für ECM- bzw. DMS-Systeme war die digitale Dokumentenverarbeitung bisher eine große Aufgabe. Heute jedoch können Künstliche Intelligenz und Machine Learning die Trefferquote bei der Dokumentenklassifizierung deutlich erhöhen. [...]

Olaf Holst ist Chief Technology Evangelist bei Optimal Systems. (c) Optimal Systems GmbH

Laut einer aktuellen Umfrage von Bitkom Research erstellen mittlerweile vier von zehn Unternehmen elektronische Rechnungen. Sie nutzen bereits die Vorteile, die ihnen die digitale Rechnungsverarbeitung bietet, wie schnellere Prozesse, weniger Fehler und geringere Kosten. Demgegenüber steht ein hoher Anteil von Unternehmen, in denen „unstrukturierte Rechnungsformate wie die digitale Rechnung im PDF-Format (60 Prozent) oder die Papierrechnung (87 Prozent) noch weit verbreitet sind.“ Für letztere ist der Brieföffner wohl der wichtigste Bestandteil der täglichen Eingangsrechnungsverarbeitung. Moderne ECM-/DMS-Lösungen mit KI-Unterstützung ermöglichen es Unternehmen nun, solche manuellen Instrumente endlich abzulösen und auf eine umfassende Automatisierung durch einen ganzheitlichen digitalen Ansatz zu setzen.

Die Herausforderung der Dokumentenklassifizierung

Die Herausforderung bei allen Arten von Dokumenten besteht darin, dass sie richtig kategorisiert werden müssen. Dies gilt sowohl für analoge Papierdokumente als auch für „halbdigitale“ elektronische PDFs. Wer trifft diese Entscheidung normalerweise? Buchhalter, die damit beauftragt sind, Dokumente zu scannen oder an die entsprechenden Kollegen weiterzuleiten. Sowohl hier als auch im weiteren Verlauf des Prozesses, zum Beispiel bei der Übertragung von Buchhaltungsdaten in andere Systeme, können Fehler auftreten. Selbst die in einem Scanner integrierte OCR-Funktionalität bietet keine zuverlässige Garantie dafür, dass alle Informationen auf Anhieb korrekt aus dem Dokument extrahiert werden können.

Dokumentenklassifizierung mittels Machine Learning

Content-Services-Plattformen und Informationsmanagement-Anwendungen, die mit Hilfe von maschinellem Lernen Inhalte erkennen und verarbeiten, stellen den nächsten Schritt in der Dokumentenklassifikation dar. Der Begriff „Künstliche Intelligenz“ wird in diesem Zusammenhang häufig verwendet, ist aber nicht direkt anwendbar. Das liegt daran, dass ein KI-System zunächst dumm ist – die Intelligenz muss erst trainiert werden. Es muss lernen, was eine Rechnung ausmacht. Im Gegensatz zu herkömmlichen Dokumentenmanagementsystemen, die anhand von Belegpositionsdaten Informationen über Kunde, Lieferant, Rabatt, Mehrwertsteuer, Endsumme usw. erfassen, verfolgen KI-Systeme einen anderen Ansatz. Mittels „Natural Language Processing“ (NLP) wird die natürliche Sprache erfasst und über Algorithmen verarbeitet.

Grundlage für Machine Learning: valide Trainingsdaten

Die Qualität der Daten, mit denen ein ECM-System mit KI-Unterstützung trainiert wird, ist der entscheidende Faktor für dessen Intelligenzquotienten. Hierfür werden die historischen Rechnungsdaten des Unternehmens verwendet, von denen man weiß, dass sie korrekt sind. Nachdem das System auf diese Weise trainiert wurde, kann es auf neue Dokumente losgelassen werden. Durch die Einstellung von Schwellenwerten kann der Sachbearbeiter prüfen, mit welcher Wahrscheinlichkeit das System erkennt, dass es sich um einen spezifischen Kunden handelt. Ist dieser Schwellenwert bereits entsprechend hoch, ist eine erneute Prüfung nicht mehr notwendig. Wenn das System beispielsweise davon ausgeht, dass es sich bei dem Beleg zu 99,98 Prozent um eine Rechnung handelt, gibt es kaum Zweifel. Da alle im Beleg erkannten Positionsdaten geschätzt und als Prozentwert angezeigt werden, kann der Sachbearbeiter die Validierung Schritt für Schritt durchführen. Die Ergebnisse der menschlichen Bewertung fließen in das System zurück und verbessern die Erkennungsqualität in den folgenden Durchläufen.

Fazit

Dokumentenklassifizierung mittels Machine Learning birgt ein enormes Effizienzpotenzial für die Unternehmen. Voraussetzung ist eine entsprechende Digitalisierung der Prozesse, um Technologien wie KI einsetzen zu können.

*Der Autor Olaf Holst ist Chief Technology Evangelist bei Optimal Systems.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*