KI-gestützte ERP-Systeme für den Mittelstand

Die Implementierung von KI in das ERP-System eröffnet eine Vielzahl neuer Möglichkeiten. Vor allem mittelständischer Unternehmen profitieren von optimierten Prozessen, mehr Effizienz, weniger Kosten und einer nachhaltig ausgelegten Wettbewerbsposition. [...]

Michael Finkler verantwortet das Business Development der proALPHA Gruppe. (c) proALPHA
Michael Finkler verantwortet das Business Development der proALPHA Gruppe. (c) proALPHA

In einer sich stetig wandelnden Geschäftswelt stehen mittelständische Unternehmen vor den Herausforderungen, Prozesse kontinuierlich zu optimieren und Ressourcen effektiv zu nutzen. Um den damit verbundenen digitalen Transformationsprozess so schnell und unkompliziert wie möglich zu gestalten, ist eine intelligente und leistungsstarke Software unabdingbar. ERP-Systeme spielen dabei eine entscheidende Rolle, denn sie sind das digitale Rückgrat eines Unternehmens. Sind sie angereichert mit KI ist eine transparentere Sicht auf alle Geschäftsprozesse sowie eine produktivere Zusammenarbeit der verschiedenen Abteilungen möglich. 

Jedoch sind die Grenzen zu Big Data und Business Intelligence (BI ) hier fließend. Während BI eher auf vergangenheitsbezogene Analyse abzielt, ermöglicht KI zukunftsorientierte Prognosen, die auch konkrete Handlungsempfehlungen liefern. Daher hebt KI das Potential für datengetriebene Unternehmenssteuerung auf eine neue Ebene. 

Wissensmanagement und -transfer als Innovationstreiber

Generative KI verleiht dem Management und der Übertragung von Wissen im eigenen Unternehmen einen erheblichen Schub. Denn gLarge Language Models (LLM) wie ChatGPT können „natürliche“ Sprache verstehen, verarbeiten und generieren. Wenn KI mit – zum Teil umfangreichen – Textmengen und Dokumenten gefüttert und trainiert wird, entsteht eine bisher unerreichte Wissensressource. 

Durch die Vernetzung der Technologie- und Wissenslandschaft von Unternehmen erhalten Mitarbeitenden einen schnelleren Zugriff auf Informationen und Expertise – über alle Standorte, Geschäftsbereiche, Abteilungen oder Ländergrenzen hinweg. Die neu erlangte Intelligenz im Wissensmanagement erleichtert den technologischen Zugang. Zudem kann die integrierte KI verschiedene Vokabulare, Nomenklaturen und Kontexte erkennen und somit jeden Nutzer in seiner spezifischen (Fach-)Sprache bedienen oder im Kontext der Abfrage mit einem geeigneten Experten im Unternehmen verbinden.

So können zum Beispiel Kundenanfragen schneller, professioneller und auf individuelle Weise beantwortet werden. Die Wissensdatenbank lässt sich rasch erstellen, relevante Informationen mühelos digitalisieren und Kundenfeedback leichter automatisieren. Zudem lernt die Plattform ständig dazu.

Erhöhte Genauigkeit bei Prognosen und Handlungsempfehlungen 

Der Datenbestand aus dem ERP-System stellt neben sprachbasierten Modellen eine unerschöpfliche Quelle für eine datengetriebene Unternehmenssteuerung dar. Auch hier erweitert KI die Möglichkeiten zur Beschreibung, Diagnose und Prognose auf ein neues Level – einschließlich konkreter Handlungsempfehlungen, die im Endausbau, automatisch umgesetzt werden können. Tools zur Visualisierung und Analyse erleichtern außerdem das Verständnis komplexer Daten und fördern eine datengesteuerte Entscheidungsfindung.

Mit Hilfe von KI können Prozesse über Dashboards beschrieben, Fehler über Analysen identifiziert oder konkrete Potenziale wie in etwa zur Liquiditätssteigerung vorhergesagt werden. Darüber hinaus kann sie auch monetär bewertete Handlungsempfehlungen in Unternehmensprozessen aussprechen, indem sie den Cash Conversion Cycle (Geldumschlagsdauer) analysiert. In der Fertigung kann so die Nachfrage nach bestimmten Produkten oder Rohstoffen einfach und schnell vorhergesagt, die Produktion entsprechend angepasst und damit die Planungssicherheit erhöht werden. So lassen sich isch Engpässe vermeiden, die Liefertreue wird verbessert und die Produktion gemäß den tatsächlichen Bedürfnissen des Marktes optimiert. 

Automatisierung und Optimierung von Prozessen

Durch den Einsatz von KI-basierten ERP-Systemen können wiederkehrende und zeitaufwändige Aufgaben automatisiert werden. Das umfasst zum Beispiel die Erfassung und Verarbeitung von Daten, die Planung und Überwachung der Produktion sowie die Verwaltung des Bestandes.

Zudem sind Unternehmen in der Lage, Produktionsprozesse mithilfe intelligenter Analysen zu optimieren, die eigene Produktivität durch die Beschleunigung von Prozessen zu steigern, um den Anforderungen eines dynamischen Marktes gerecht zu werden. So können Abweichungen und Unregelmäßigkeiten – etwa bei den Liegezeiten – identifiziert werden. Das führt dazu, dass Ineffizienzen in den Fertigungsprozessen aufgedeckt und geeignete Maßnahmen ergriffen werden, um die Produktionsleistung zu steigern. 

Auch Entscheidungsprozesse können automatisiert werden, da solche Systeme mithilfe von Machine-Learning-Algorithmen in der Lage sind, aus alten Daten zu lernen, Schlüsse aus ihnen zu ziehen und zukünftige Entscheidungen automatisch zu treffen. Das spart Zeit und verbessert die Entscheidungsqualität – insbesondere in Situationen, in denen eine schnelle Reaktion auf unvorhergesehene Ereignisse erforderlich ist, um Stillstände in der Produktion zu vermeiden. 

Steigerung der Effizienz durch Visualisierung und Verschlankung

Auf Basis modernster Process-Mining-Methoden können KI-gestützte ERP-Systeme die realen Abläufe innerhalb eines Unternehmens transparent abbilden, indem sie Daten aus allen Abteilungen und Prozessen zusammenführen. Auf dieser Grundlage lassen sich interdisziplinäre Zusammenhänge erkennen und eine ganzheitliche Optimierung ermöglichen. Sie analysieren zudem die Geschäftsprozesse und identifizieren Unregelmäßigkeiten und Risikofaktoren wie Lieferverzögerungen oder Qualitätsabweichungen. Potenzielle Geschäftsprozessrisiken werden durch die Implementierung von Funktionen zur Echtzeitüberwachung und -analyse frühzeitig erkannt und visualisiert, proaktive Maßnahmen zu deren Eliminierung können dann ergriffen werden. Die Analyse mittels entsprechender Technologien sorgt für eine effizientere Gestaltung der Durchlaufzeiten – in etwa Lieferzeiten –  so dass Unternehmen Engpässe reduzieren, Kosten senken und schneller auf Kundenbedürfnisse reagieren können.

Dispositionsparameter in der Materialbedarfsplanung und Bestandssteuerung

Für Unternehmen sind die optimale Steuerung ihrer Dispoparameter, die Bestimmung der sinnvollsten Bestellmengen, die Festlegung des idealen Bestellzeitpunkts oder die Optimierung des Sicherheitsbestands erfolgskritischer Faktoren. Mit einer KI-gestützten ERP-Lösung können diese Prozesse gestärkt werden, was zu kosteneffizienteren Betriebsabläufen führt , die Lieferperformance verbessert und die Kundenzufriedenheit erhöht. 

KI-Technologien wie NEMO unterstützen außerdem die Optimierung der Bestellmengen und Sicherheitsbestände . Somit werden unnötige Lagerkosten sowie eine Kapitalbindung innerhalb der Lagerhaltung vermieden.

Zusätzlich bietet KI die Möglichkeit strategische Planungssicherheit durch eine Erstellung exakter Verbrauchsprognosen für Produkte und Teile zu schaffen, um den optimalen zukünftigen Bestand ermitteln zu können. Auch die passenden Wiederbeschaffungszeiten und Dispoparameter werden vorhergesagt, was die rechtzeitige Verfügbarkeit von Produkten sicherstellt. Durch die Analyse der Wiederbeschaffungszeiten vergangener Bestellungen beziehungsweise Lieferungen wird unter Berücksichtigung von Prognosen, Unsicherheiten und anderen relevanten Faktoren der beste Zeitpunkt für eine Nachbestellung ermittelt. 

Basierend auf der Nachfragevarianz, Lieferzeit und anderen Faktoren werden auch Sicherheitsbestände, optimiert. Das führt schlussendlich zur Verbesserung der Liefersicherheit sowie Kundenzufriedenheit bei gleichzeitiger Minimierung unnötiger Lagerkosten. 

Optimierung der Stammdaten

Die Verwendung optimierter Stammdaten kann für Unternehmen einen entscheidenden Wettbewerbsvorteil darstellen. KI-gestützte ERP-Systeme sind in der Lage, automatisiert Muster, Abweichungen und Auffälligkeiten in Datenbeständen zu erkennen. Zudem können sie aus Millionen von Datenpunkten wichtige Erkenntnisse über den Status Quo eines Unternehmens ableiten sowie eine präzise und umfassende Sicht über den betrieblichen Datenbestand erlangen und die darin enthaltenen Informationen richtig lesen, interpretieren und analysieren. Die automatische Identifizierung doppelter Datensätze trägt zusätzlich zur Verbesserung der Datenkonsistenz bei. Durch die Nutzung von Deficiency-Mining-Technologie sind Unternehmen außerdem in der Lage, ihre Datenqualität kontinuierlich zu überwachen und Abweichungen in den Prozessen zu erkennen.

*Der Autor Michael Finkler verantwortet das Business Development der proALPHA Gruppe.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*