Microsoft veröffentlicht KI-Bibliothek für Mini-Computer

Microsoft veröffentlicht die Embedded Learning Library (ELL) um Machine Learning (ML) auf Mini-Computer zu bringen. Systeme wie der Raspberry Pi oder die Arduino-Plattform sollen so ML-Prozesse auch ohne Cloud-Anbindung bearbeiten können. [...]

Microsoft veröffentlicht seine Embedded Learning Library (ELL) als Open Source. Diese soll Machine Learning (ML) auch auf Mini-PCs wie den Raspberry Pi oder die Arduino-Plattform ermöglichen. Bisher war hierfür immer eine direkte Verbindung zu einer Cloud nötig, die die eigentliche Rechenleistung übernahm. ELL soll stattdessen ganz ohne Cloud-Anbindung direkt auf den Mini-PCs laufen.
Durch den neuen Ansatz ist auch keine aktive Internetverbindung mehr erforderlich. Das reduziere nicht nur den Energieverbrauch, sondern schütze zusätzlich auch die Privatsphäre, da keine Daten mehr verschickt werden, so Manik Varma, Senior Researcher bei Microsoft Research India. Die APIs lassen sich entweder mit C++ oder Python ansteuern.
Das kleinste Gerät, auf das sich die Forscher konzentriert haben, ist der Arduino Uno mit schlanken zwei KByte RAM. Die Algorithmen sind für Ja-oder-Nein-Aufgaben sowie für Multiple-Choice-Fragen geschrieben. Die Vorhersage ist also auf einen „wahren“ Zielwert beschränkt. Mit der Entwicklung der ELL wolle man einen weiteren Schritt Richtung „Demokratisierung von KI“ gehen, sagt Saleema Amershi, eine Human-Computer-Interaktionsforscherin bei Microsoft.
Projekt noch am Anfang
Microsoft weist in einer Beschreibung auf GitHub darauf hin, dass sich das Projekt noch ganz am Anfang befinde und deshalb noch einige Veränderungen zu erwarten sind. Diese könnten auch zur Inkompatibilität führen. Ein Tutorial erlaubt es Nutzern derzeit, die Bilderkennung auf einem Raspberry Pi mit einer Web-Cam zu testen.
Grundsätzlich sei das Einsatzgebiet dieser Technologie extrem vielfältig. So könnten damit etwa intelligente Boden-Feuchtigkeitssensoren für die Landwirtschaft oder auch smarte Hirnimplantate in der Medizin entwickelt werden.
*Alexandra Lindner ist Redakteurin bei COM professional.

Mehr Artikel

Otto Neuer, Regional VP und General Manager bei Denodo. (c) Denodo
Kommentar

Wie logisches Datenmanagement das ESG-Reporting vereinfacht

Mit zunehmendem Bewusstsein für Nachhaltigkeitsthemen wächst auch der Druck, den Stakeholder diesbezüglich auf Unternehmen ausüben. Gerade auf Seiten der Gesetzesgeber entstehen vermehrt Richtlinien, die „ESG“ (Enviornmental, Social und Governance)-Anliegen vorantreiben und Unternehmen zu mehr Transparenz in Form von entsprechender Berichterstattung verpflichten. […]

Frank Schwaak, Field CTO EMEA bei Rubrik (c) Rubrik
Kommentar

Wie CIOs Unternehmen als Cloud-Lotse sicher durch Daten- und Sicherheitsrisiken führen

In einer fragmentierten Infrastruktur ist es herausfordernd, den Durchblick über Daten und Kosten zu behalten. CIOs werden zu Lotsen, die das Unternehmen sicher durch die unterschiedlichen Cloud-Umgebungen steuern müssen. Was können Unternehmen also tun, um den Überblick über Cloud-Anwendungen zu behalten und den Kurs zwischen Cloud und Cyberresilienz zu halten? […]

Ass. Prof. Dr. Johannes Brandstetter, Chief Researcher bei NXAI (c) NXAI
News

KI-Forschung in Österreich: Deep-Learning zur Simulation industrieller Prozesse

Als erstes Team weltweit präsentiert das NXAI-Forscherteam um Johannes Brandstetter eine End-to-End-Deep-Learning Alternative zur Modifizierung industrieller Prozesse, wie Wirbelschichtreaktoren oder Silos. Das Team strebt schnelle Echtzeit-Simulationen an, plant den Aufbau von Foundation Models für Industriekunden und fokussiert sich im nächsten Schritt auf die Generalisierung von Simulationen. […]

img-9
News

Die besten Arbeitgeber der Welt

Great Place To Work hat durch die Befragung von mehr als 7,4 Millionen Mitarbeitenden in den Jahren 2023 und 2024 die 25 World’s Best Workplaces identifiziert. 6 dieser Unternehmen wurden auch in Österreich als Best Workplaces ausgezeichnet. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*