Mustererkennung: Wie KI die Sicherheit erhöht

Computer haben dem Menschen eines voraus: sie können etwas stundenlang ohne Pause und mit gleicher Präzision ausführen. Das haben sich Forscher des Software Competence Center Hagenberg (SCCH) zunutze gemacht, um in der Sicherheitsforschung (KIRAS) den Objektschutz zu verbessern. [...]

Die Pixel (Bild1) zeigen Bewegungsmuster: Je häufiger die erfassten Bewegungen entlang einer bestimmten Trajektorie verlaufen, desto genauer können diese Daten in Gruppen zu Hauptbewegungsströmen zusammengeführt und Abweichungen erkannt werden. (c) SCCH

Als wissenschaftlicher Partner im Projekt SKIN (Schutz der Außenhaut Kritischer InfrastruktureN) konnten sie für die Bundesministerien für Inneres (BMI) sowie Landesverteidigung (BMLV) und das Vienna Centre for Societal Security (VICESSE) unter Leitung der PKE Holding AG die Fehleranfälligkeit der Videoüberwachung öffentlicher Gebäude um ca. 65% pro Kamera und Tag reduzieren. Erkenntnisse daraus fließen nun in das Leitprojekt‚ Connecting Austria‘ sowie das EU Projekt ALOHA ein.

Bislang erfolgt die Überwachung von öffentlichen Gebäuden wie Botschaften, Museen oder Ämtern über Kamerasysteme. Diese liefern Bilder auf Monitore in einen Kontrollraum, wo die Vorgänge von Menschen überwacht werden. Ungeklärte Bewegungen rund um das Gebäude lösen Alarm aus. Die Aufgabe im Projekt SKIN, gefördert im Sicherheitsforschungs-Förderprogramm KIRAS vom Bundesministerium für Verkehr, Innovation und Technologie, war Wege zu finden, wie Künstliche Intelligenz als Assistenzsystem Aktivitäten rund um ein Gebäude erkennen kann, um den Wachdienst zu entlasten.

Aus Daten Wissen generieren

Das Software Competence Center Hagenberg forscht an Analysemethoden für Bilddaten auf Basis von geometrischen Modellen und Konzepten. Die Forschungsergebnisse werden in der Bewegungsanalyse in der Medizin, im Objekt- und Personen-Tracking im Sport sowie in der Qualitätsinspektion in der Industrie eingesetzt. Von Mitte 2014 bis 2018 waren drei ForscherInnen im Projekt SKIN aktiv, unterstützt von Dr. Bernhard Moser, dem Forschungsdirektor des SCCH. „Wir befassen uns hier im Bereich Künstliche Intelligenz (KI) mit Deep Learning, also dem vertiefenden Lernen von vernetzten Systemen.

Tipp: „KI-Praxis im Unternehmen“, virtuelle Konferenz vom 26.-28.5. mit 52 Sprechern und Ausstellungsbereich. Kostenlos anmelden.

Es geht dabei um wissensbasierte Ereigniserkennung. Basis dafür sind große Mengen an Videodaten in Kombination mit Technologien, die beobachtete oder vorhersehbare Umstände wie Wetter oder typische Bewegungsmuster berücksichtigen. Ziel ist es, ein Netz so zu trainieren, dass es lernt, definierte Situationen zu erkennen und nicht bei jeder Bewegung eines Baumes Alarm zu schlagen“, erklärt Dr. Bernhard Moser. Denn aktuell löst ein Überwachungssystem noch zu oft Alarm aus, damit ein Mensch kontrolliert, ob ein beobachteter Vorgang eine Bedrohung für die Gebäudesicherheit darstellt. Da Österreich eines der sichersten Länder der Welt ist, stellen die meisten keine reale Bedrohung dar. Für den Wachdienst ist dies jedoch ermüdend: er muss sich mit jedem einzelnen befassen, auch wenn die Wahrscheinlichkeit hoch ist, dass es sich um einen Falschalarm handelt.

Behavioral Analysis kann hier Abhilfe schaffen, indem Bewegungsmuster aus den Videos abgeleitet und qualifiziert werden. Dazu benötigen die Forscher aus Hagenberg tausende Daten über alle Abläufe, die um ein Gebäude vorkommen, idealerweise im Jahresverlauf: verschiedenste Muster von fließendem und stehendem Verkehr auf der Straße und auf dem Parkplatz, Besonderheiten wie Müllauto, Fußgänger, Radfahrer, Kinderwägen – also wo und wie sich Fahrzeuge und Menschen bewegen – ebenso wie vorbeifliegende Plastiksackerl oder eben Bäume im Wind. Dafür wurden im Projekt SKIN Daten aus der Videoüberwachung durch PKE bereitgestellt. Dabei relevante Datenschutzaspekte wurden von PKE mit Hilfe des Projektpartners VICESSE geklärt und entsprechend im Design des Systems berücksichtigt.

Datengetriebene Modellierung

„Wir verarbeiten keine Daten mit identifizierbaren Personen“, beschreibt der Datenwissenschaftler die Vorgehensweise des SCCH, sondern nutzen anonymisierte Bewegungsdaten. So kann man erkennen, wohin sich jemand bewegt, ohne Rückschlüsse auf die Person ziehen zu können. Mittels Ereigniserkennung werden aus den Videodaten des zu überwachenden Objekts und anhand allgemein gültiger Modelle darüber, wie und wo sich Menschen bewegen (aufrecht, meist auf definierten Wegen wie Gehsteigen) sogenannte
Bewegungskarten erstellt. Die häufigsten Wege stellen übliche, ungefährliche Bewegungen dar. Die Forscher können mittels datengetriebener Modellierung daraus Vorhersagen ableiten. Diese kombinieren sie mit Umgebungswissen, indem der Anwender des Systems relevante Daten wie Haupteingang, Stoßzeiten, nahe Schule mit Publikumsverkehr, Hofeinfahrt für die Müllabfuhr, Gehweg oder Ausfahrt festlegt und etwa Bewegungen von Bäumen ausgeblendet werden. Um die Präzision der Vorhersagen zu erhöhen, nutzen die Experten aus Hagenbergdieses Wissen, um ein Wahrscheinlichkeits-basiertes System aufzubauen und mittels Deep Learning zu trainieren: es erkennt eine Bewegung, die von A nach B führt, und lernt anhand langjähriger Beobachtungsdaten, wie sie höchstwahrscheinlich weitergeht. Solange die Bewegung im erlernten Muster verläuft, wird kein Alarm ausgelöst. So konnte im Prototyp eines neuen Sicherheitssystems für die PKE Holding AG die Anzahl der Meldungen um ca. 65% gesenkt werden.

Die verwendeten Methoden erlauben es auch, Ereignisse im Videoarchiv nachträglich suchen zu können, ohne dass einzelne Videos gesichtet werden müssen und ohne dass die Suchkriterien bereits bei der Aufnahme festgelegt sein mussten. „Das ist problemlos möglich, weil alle Situationen als Muster abgespeichert sind“, erklärt der Forscher: „Dazu wird das Videomaterial beim Durchlauf segmentiert. So kann man einerseits alle Aufnahmen suchen, in denen ein Fahrrad vorkommt und zusätzlich etwa ein rotes Fahrrad. Andererseits kann man anhand der Bewegungsmuster eine Person suchen, die an einer bestimmen Stelle umdreht.“ Erste Arbeiten hierzu wurden bei PKE durchgeführt.

„Aus unserer Sicht war SKIN ein rundum erfolgreiches Projekt“, so Moser, „es konnte auch ein wissenschaftliches Paper veröffentlicht werden – ein wesentlicher Aspekt für das Kompetenzzentrum. Unserer MitarbeiterInnen können Erfahrung mit dieser Art von Daten und verfeinerte Methoden mitnehmen. Diese fließen nun z.B. in das Leitprojekt CONNECTING AUSTRIA ein, das die ideale Verbindung von energieeffizientem und automatisiertem Güterverkehr von der Autobahn in die Stadt untersucht, oder Projekten wie ‚RAILEye – KI und der tote Winkel in Schienenfahrzeugen‘, oder EU-Projekte ALOHA – gemeinsam mit PKE – oder TRESSPASS zur Verhaltensvorhersage von Personen an definierten Grenzen und in Flughäfen.“


Mehr Artikel

Ort der Veranstaltung "Innovationsauftakt 2025" ist das moderne Vienna Airport Conference & Innovation Center im Office Park 4 (c) Flughafen Wien
News

„Innovationsauftakt 2025“ am Flughafen Wien

Am 14. Jänner 2025 ist der Flughafen Wien mit dem „Innovationsauftakt 2025“ erneut ein Hotspot für Österreichs Innovationsszene. Hochkarätige Speaker, wie etwa Dominic Thiem, US Open Champion und Gründer von Thiem Energy, Rudolf Dömötör, Managing Director WU Gründungszentrum, Dejan Stojanovic, Founder The Failure Institute sowie weitere Experten aus Wirtschaft und Industrie teilen inspirierende Einblicke zu Innovation und diskutieren aktuelle Trends. […]

Aufgrund der Gefahr möglicher Datenverluste vermutet GlobalData, dass Unternehmen 2025 den Zugang zu generativer KI für Entwickler beschränken könnten. (c) AlfredMuller/Pixabay
News

GlobalData prognostiziert Zugangsbeschränkungen für Entwickler zu GenAI wegen Datenverluste 

Das Marktforschungsunternehmen Global Data erwartet, dass Unternehmen aufgrund von Bedenken hinsichtlich des Schutzes von Daten die Nutzung von generativer KI (GenAI) durch Entwickler stärker einschränken werden. Vielmehr wird agentenbasierte KI zu einer wichtigen Weiterbildungsmöglichkeit für IT-Fachleute, und Open-Source-Software (OSS) wird die Innovation in der Cloud-Entwicklung vorantreiben. […]

News

KI- und Automatisierungstrends im Jahr 2025

In den letzten Jahren haben Unternehmen darum gewetteifert, die Vorteile von KI zu nutzen. Doch 2025 wird das Jahr, in dem diese KI-Nutzung eine neue Reife erreicht. Das ermöglicht den Durchbruch von Agentic Automation, die es KI-Agenten erstmals erlaubt, Wissensarbeitende zuverlässig zu unterstützen. […]

News

„Wir haben deine Daten“

Mit dem Claim „Wir haben Deine Daten“ lenken iab austria, der Bundesverband Digitale Wirtschaft und IAB Switzerland im Rahmen einer gemeinsamen Kampagne die Aufmerksamkeit auf die Relevanz von Daten für Wirtschaft, Wissenschaft und Gesellschaft. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*