Mustererkennung: Wie KI die Sicherheit erhöht

Computer haben dem Menschen eines voraus: sie können etwas stundenlang ohne Pause und mit gleicher Präzision ausführen. Das haben sich Forscher des Software Competence Center Hagenberg (SCCH) zunutze gemacht, um in der Sicherheitsforschung (KIRAS) den Objektschutz zu verbessern. [...]

Die Pixel (Bild1) zeigen Bewegungsmuster: Je häufiger die erfassten Bewegungen entlang einer bestimmten Trajektorie verlaufen, desto genauer können diese Daten in Gruppen zu Hauptbewegungsströmen zusammengeführt und Abweichungen erkannt werden. (c) SCCH

Als wissenschaftlicher Partner im Projekt SKIN (Schutz der Außenhaut Kritischer InfrastruktureN) konnten sie für die Bundesministerien für Inneres (BMI) sowie Landesverteidigung (BMLV) und das Vienna Centre for Societal Security (VICESSE) unter Leitung der PKE Holding AG die Fehleranfälligkeit der Videoüberwachung öffentlicher Gebäude um ca. 65% pro Kamera und Tag reduzieren. Erkenntnisse daraus fließen nun in das Leitprojekt‚ Connecting Austria‘ sowie das EU Projekt ALOHA ein.

Bislang erfolgt die Überwachung von öffentlichen Gebäuden wie Botschaften, Museen oder Ämtern über Kamerasysteme. Diese liefern Bilder auf Monitore in einen Kontrollraum, wo die Vorgänge von Menschen überwacht werden. Ungeklärte Bewegungen rund um das Gebäude lösen Alarm aus. Die Aufgabe im Projekt SKIN, gefördert im Sicherheitsforschungs-Förderprogramm KIRAS vom Bundesministerium für Verkehr, Innovation und Technologie, war Wege zu finden, wie Künstliche Intelligenz als Assistenzsystem Aktivitäten rund um ein Gebäude erkennen kann, um den Wachdienst zu entlasten.

Aus Daten Wissen generieren

Das Software Competence Center Hagenberg forscht an Analysemethoden für Bilddaten auf Basis von geometrischen Modellen und Konzepten. Die Forschungsergebnisse werden in der Bewegungsanalyse in der Medizin, im Objekt- und Personen-Tracking im Sport sowie in der Qualitätsinspektion in der Industrie eingesetzt. Von Mitte 2014 bis 2018 waren drei ForscherInnen im Projekt SKIN aktiv, unterstützt von Dr. Bernhard Moser, dem Forschungsdirektor des SCCH. „Wir befassen uns hier im Bereich Künstliche Intelligenz (KI) mit Deep Learning, also dem vertiefenden Lernen von vernetzten Systemen.

Tipp: „KI-Praxis im Unternehmen“, virtuelle Konferenz vom 26.-28.5. mit 52 Sprechern und Ausstellungsbereich. Kostenlos anmelden.

Es geht dabei um wissensbasierte Ereigniserkennung. Basis dafür sind große Mengen an Videodaten in Kombination mit Technologien, die beobachtete oder vorhersehbare Umstände wie Wetter oder typische Bewegungsmuster berücksichtigen. Ziel ist es, ein Netz so zu trainieren, dass es lernt, definierte Situationen zu erkennen und nicht bei jeder Bewegung eines Baumes Alarm zu schlagen“, erklärt Dr. Bernhard Moser. Denn aktuell löst ein Überwachungssystem noch zu oft Alarm aus, damit ein Mensch kontrolliert, ob ein beobachteter Vorgang eine Bedrohung für die Gebäudesicherheit darstellt. Da Österreich eines der sichersten Länder der Welt ist, stellen die meisten keine reale Bedrohung dar. Für den Wachdienst ist dies jedoch ermüdend: er muss sich mit jedem einzelnen befassen, auch wenn die Wahrscheinlichkeit hoch ist, dass es sich um einen Falschalarm handelt.

Behavioral Analysis kann hier Abhilfe schaffen, indem Bewegungsmuster aus den Videos abgeleitet und qualifiziert werden. Dazu benötigen die Forscher aus Hagenberg tausende Daten über alle Abläufe, die um ein Gebäude vorkommen, idealerweise im Jahresverlauf: verschiedenste Muster von fließendem und stehendem Verkehr auf der Straße und auf dem Parkplatz, Besonderheiten wie Müllauto, Fußgänger, Radfahrer, Kinderwägen – also wo und wie sich Fahrzeuge und Menschen bewegen – ebenso wie vorbeifliegende Plastiksackerl oder eben Bäume im Wind. Dafür wurden im Projekt SKIN Daten aus der Videoüberwachung durch PKE bereitgestellt. Dabei relevante Datenschutzaspekte wurden von PKE mit Hilfe des Projektpartners VICESSE geklärt und entsprechend im Design des Systems berücksichtigt.

Datengetriebene Modellierung

„Wir verarbeiten keine Daten mit identifizierbaren Personen“, beschreibt der Datenwissenschaftler die Vorgehensweise des SCCH, sondern nutzen anonymisierte Bewegungsdaten. So kann man erkennen, wohin sich jemand bewegt, ohne Rückschlüsse auf die Person ziehen zu können. Mittels Ereigniserkennung werden aus den Videodaten des zu überwachenden Objekts und anhand allgemein gültiger Modelle darüber, wie und wo sich Menschen bewegen (aufrecht, meist auf definierten Wegen wie Gehsteigen) sogenannte
Bewegungskarten erstellt. Die häufigsten Wege stellen übliche, ungefährliche Bewegungen dar. Die Forscher können mittels datengetriebener Modellierung daraus Vorhersagen ableiten. Diese kombinieren sie mit Umgebungswissen, indem der Anwender des Systems relevante Daten wie Haupteingang, Stoßzeiten, nahe Schule mit Publikumsverkehr, Hofeinfahrt für die Müllabfuhr, Gehweg oder Ausfahrt festlegt und etwa Bewegungen von Bäumen ausgeblendet werden. Um die Präzision der Vorhersagen zu erhöhen, nutzen die Experten aus Hagenbergdieses Wissen, um ein Wahrscheinlichkeits-basiertes System aufzubauen und mittels Deep Learning zu trainieren: es erkennt eine Bewegung, die von A nach B führt, und lernt anhand langjähriger Beobachtungsdaten, wie sie höchstwahrscheinlich weitergeht. Solange die Bewegung im erlernten Muster verläuft, wird kein Alarm ausgelöst. So konnte im Prototyp eines neuen Sicherheitssystems für die PKE Holding AG die Anzahl der Meldungen um ca. 65% gesenkt werden.

Die verwendeten Methoden erlauben es auch, Ereignisse im Videoarchiv nachträglich suchen zu können, ohne dass einzelne Videos gesichtet werden müssen und ohne dass die Suchkriterien bereits bei der Aufnahme festgelegt sein mussten. „Das ist problemlos möglich, weil alle Situationen als Muster abgespeichert sind“, erklärt der Forscher: „Dazu wird das Videomaterial beim Durchlauf segmentiert. So kann man einerseits alle Aufnahmen suchen, in denen ein Fahrrad vorkommt und zusätzlich etwa ein rotes Fahrrad. Andererseits kann man anhand der Bewegungsmuster eine Person suchen, die an einer bestimmen Stelle umdreht.“ Erste Arbeiten hierzu wurden bei PKE durchgeführt.

„Aus unserer Sicht war SKIN ein rundum erfolgreiches Projekt“, so Moser, „es konnte auch ein wissenschaftliches Paper veröffentlicht werden – ein wesentlicher Aspekt für das Kompetenzzentrum. Unserer MitarbeiterInnen können Erfahrung mit dieser Art von Daten und verfeinerte Methoden mitnehmen. Diese fließen nun z.B. in das Leitprojekt CONNECTING AUSTRIA ein, das die ideale Verbindung von energieeffizientem und automatisiertem Güterverkehr von der Autobahn in die Stadt untersucht, oder Projekten wie ‚RAILEye – KI und der tote Winkel in Schienenfahrzeugen‘, oder EU-Projekte ALOHA – gemeinsam mit PKE – oder TRESSPASS zur Verhaltensvorhersage von Personen an definierten Grenzen und in Flughäfen.“


Mehr Artikel

News

Bad Bots werden immer menschenähnlicher

Bei Bad Bots handelt es sich um automatisierte Softwareprogramme, die für die Durchführung von Online-Aktivitäten im großen Maßstab entwickelt werden. Bad Bots sind für entsprechend schädliche Online-Aktivitäten konzipiert und können gegen viele verschiedene Ziele eingesetzt werden, darunter Websites, Server, APIs und andere Endpunkte. […]

Frauen berichten vielfach, dass ihre Schmerzen manchmal jahrelang nicht ernst genommen oder belächelt wurden. Künftig sollen Schmerzen gendersensibel in 3D visualisiert werden (c) mit KI generiert/DALL-E
News

Schmerzforschung und Gendermedizin

Im Projekt „Embodied Perceptions“ unter Leitung des AIT Center for Technology Experience wird das Thema Schmerzen ganzheitlich und gendersensibel betrachtet: Das Projektteam forscht zu Möglichkeiten, subjektives Schmerzempfinden über 3D-Avatare zu visualisieren. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*