Neuer Lernalgorithmus der TU Graz soll Einsatzmöglichkeiten von KI deutlich ausweiten

Die an der TU Graz entwickelte Lernmethode e-prop soll eigenen Angaben zufolge die Grundlage für drastisch energieeffizientere Hardware-Implementierungen von Artificial Intelligence bilden. [...]

Die beiden TU Graz-Informatiker Robert Legenstein und Wolfgang Maass (v.l.) arbeiten an energieeffizienten AI-Systemen (c) Lunghammer - TU Graz
Die beiden TU Graz-Informatiker Robert Legenstein und Wolfgang Maass (v.l.) arbeiten an energieeffizienten AI-Systemen (c) Lunghammer - TU Graz

Der hohe Energieverbrauch beim Lernen von künstlichen neuronalen Netwerken ist eine der größten Hürden für den breiten Einsatz von Artificial Intelligence (AI)/künstliche Intelligenz (KI), vor allem bei mobilen Anwendungen. Ein Ansatz, um dieses Problem zu lösen ist, von Erkenntnissen über das menschliche Gehirn zu lernen: Dieses hat zwar die Rechenleistung eines Supercomputers, braucht mit 20 Watt aber nur ein Millionstel von dessen Energie. Verantwortlich dafür ist unter anderem die effiziente Informationsweitergabe zwischen den Neuronen im Gehirn: Diese senden dazu kurze, elektrische Impulse (Spikes) an andere Neuronen – um Energie zu sparen aber nur so oft, wie unbedingt notwendig.

Ereignisbasierte Informationsverarbeitung

Diese Funktionsweise hat sich eine Arbeitsgruppe rund um die beiden TU Graz-Informatiker Wolfgang Maass und Robert Legenstein bei der Entwicklung des neuen maschinellen Lernalgorithmus e-prop (kurz für e-propagation) zu eigen gemacht: Die Forschenden des Instituts für Grundlagen der Informationsverarbeitung, die auch Teil des europäischen Leuchtturmprojekts Human Brain Project sind, nutzen in ihrem Modell Spikes zur Kommunikation zwischen Neuronen in einem künstlichen neuronalen Netz. Die Spikes werden nur dann aktiv, wenn sie für die Informationsverarbeitung im Netzwerk gebraucht werden. Das Lernen ist für solche wenig aktiven Netzwerke eine besondere Herausforderung, da es längere Beobachtungen braucht um zu ermitteln, welche Neuronenverbindungen die Netzwerkleistung verbessern.

Bisherige Methoden erzielten zu geringe Lernerfolge oder erforderten enormen Speicherplatz. e-prop löst laut Aussendung der TU Graz nun dieses Problem mittels einer vom Gehirn abgeschauten dezentralen Methode, bei der jedes Neuron in einer sogenannten e-trace (eligibility trace; dt. Ereignisspur) dokumentiert, wann seine Verbindungen benutzt wurden. Die Methode ist ähnlich leistungsfähig wie die besten und aufwändigsten bekannten anderen Lernmethoden. Details dazu wurden nun im wissenschaftlichen Journal Nature Communications publiziert.

Online statt offline

Bei vielen der derzeit eingesetzten Maschine-Learning-Techniken werden alle Netzwerkaktivitäten zentral und offline gespeichert, um alle paar Schritte nachvollziehen zu können, wie die Verbindungen während der Berechnungen benutzt wurden. Dies erfordert aber einen ständigen Datentransfer zwischen dem Speicher und den Prozessoren, eine der Hauptursachen für den zu großen Energie-Verbrauch gegenwärtiger AI-Implementationen. e-prop hingegen funktioniert vollkommen online, und erfordert auch im realen Betrieb keinen separaten Speicher – das Lernen wird dadurch viel energieeffizienter.

Triebfeder für neuromorphe Hardware

Maass und Legenstein hoffen, dass e-prop die Entwicklung einer neuen Generation von mobilen lernfähigen Rechensystemen vorantreibt, die nicht mehr programmiert werden müssen, sondern nach dem Vorbild des menschlichen Gehirns lernen und sich dadurch an laufend neue Anforderungen anpassen. Das Ziel ist es, diese Rechensysteme nicht mehr energieintensiv ausschließlich über eine Cloud lernen zu lassen, sondern den größeren Teil der Lernfähigkeit effizient in mobile Hardware-Komponenten einzubauen und dadurch Energie zu sparen.

Erste Schritte, e-prop in die Anwendung zu bringen, wurden bereits gemacht: So arbeitet das Team der TU Graz gemeinsam mit der Advanced Processor Technologies Research Group (APT) der Universität Manchester im Human Brain Projekt daran e-prop in das dort entwickelte neuromorphe SpiNNaker-System einzubauen. Gleichzeitig arbeitet die TU Graz mit Forschenden des Halbleiterherstellers Intel daran, den Algorithmus in die nächsten Version von Intels neuromorphen Chip Loihi zu integrieren.


Mehr Artikel

Otto Neuer, Regional VP und General Manager bei Denodo. (c) Denodo
Kommentar

Wie logisches Datenmanagement das ESG-Reporting vereinfacht

Mit zunehmendem Bewusstsein für Nachhaltigkeitsthemen wächst auch der Druck, den Stakeholder diesbezüglich auf Unternehmen ausüben. Gerade auf Seiten der Gesetzesgeber entstehen vermehrt Richtlinien, die „ESG“ (Enviornmental, Social und Governance)-Anliegen vorantreiben und Unternehmen zu mehr Transparenz in Form von entsprechender Berichterstattung verpflichten. […]

Frank Schwaak, Field CTO EMEA bei Rubrik (c) Rubrik
Kommentar

Wie CIOs Unternehmen als Cloud-Lotse sicher durch Daten- und Sicherheitsrisiken führen

In einer fragmentierten Infrastruktur ist es herausfordernd, den Durchblick über Daten und Kosten zu behalten. CIOs werden zu Lotsen, die das Unternehmen sicher durch die unterschiedlichen Cloud-Umgebungen steuern müssen. Was können Unternehmen also tun, um den Überblick über Cloud-Anwendungen zu behalten und den Kurs zwischen Cloud und Cyberresilienz zu halten? […]

Ass. Prof. Dr. Johannes Brandstetter, Chief Researcher bei NXAI (c) NXAI
News

KI-Forschung in Österreich: Deep-Learning zur Simulation industrieller Prozesse

Als erstes Team weltweit präsentiert das NXAI-Forscherteam um Johannes Brandstetter eine End-to-End-Deep-Learning Alternative zur Modifizierung industrieller Prozesse, wie Wirbelschichtreaktoren oder Silos. Das Team strebt schnelle Echtzeit-Simulationen an, plant den Aufbau von Foundation Models für Industriekunden und fokussiert sich im nächsten Schritt auf die Generalisierung von Simulationen. […]

img-10
News

Die besten Arbeitgeber der Welt

Great Place To Work hat durch die Befragung von mehr als 7,4 Millionen Mitarbeitenden in den Jahren 2023 und 2024 die 25 World’s Best Workplaces identifiziert. 6 dieser Unternehmen wurden auch in Österreich als Best Workplaces ausgezeichnet. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*