Neuer magnetoelektrischer Effekt entdeckt

Auf sehr ungewöhnliche Weise sind elektrische und magnetische Eigenschaften eines bestimmten Kristalls miteinander verbunden – an der TU Wien wurde das Phänomen entdeckt und erklärt. [...]

Lukas Weymann im Labor an der TU Wien.
Lukas Weymann im Labor an der TU Wien. (c) TU Wien

Elektrizität und Magnetismus hängen eng miteinander zusammen: Stromleitungen erzeugen ein Magnetfeld, rotierende Magnete in einem Generator erzeugen Strom. Viel komplizierter ist aber das Phänomen, dass auch elektrische und magnetische Eigenschaften bestimmter Materialien miteinander gekoppelt sind. Elektrische Eigenschaften mancher Kristalle kann man durch Magnetfelder beeinflussen – und umgekehrt. Man spricht in diesem Fall von einem „magnetoelektrischen Effekt“. Er spielt eine wichtige technologische Rolle, etwa für bestimmte Sensoren, oder auch für die Suche nach neuen Konzepten der Datenspeicherung.

An der TU Wien untersuchte man nun ein spezielles Material, bei dem man auf den ersten Blick eigentlich überhaupt keinen magnetoelektrischen Effekt erwarten würde. Doch sorgfältige Experimente ergaben: Der Effekt lässt sich auch dort finden, er funktioniert allerdings völlig anders als sonst. Und genau deshalb lässt er sich auf hochsensitive Weise steuern: Bereits kleine Änderungen der Magnetfeldrichtung können die elektrischen Eigenschaften des Materials in einen völlig anderen Zustand schalten.

Auf die Symmetrie kommt es an

„Ob die elektrischen und magnetischen Eigenschaften eines Kristalls miteinander gekoppelt sind, hängt von seiner inneren Symmetrie ab“, sagt Professor Andrei Pimenov vom Institut für Festkörperphysik der TU Wien. „Wenn der Kristall einen hohen Grad an Symmetrie hat, wenn zum Beispiel die eine Seite des Kristalls genau das Spiegelbild der anderen Seite ist, dann kann es schon aus theoretischen Gründen keinen magnetoelektrischen Effekt geben.“

Das könnte man bei oberflächlicher Betrachtung auch von dem Kristall erwarten, der nun an der TU Wien genau untersucht wurde – ein sogenannter Langasit aus Lanthan, Gallium, Silizium und Sauerstoff, mit zusätzlich eingebauten Holmium-Atomen. „Die Kristallstruktur ist so symmetrisch, dass sie eigentlich keinen magnetoelektrischen Effekt erlauben sollte. Und bei schwachen Magnetfeldern ist tatsächlich keinerlei Kopplung mit den elektrischen Eigenschaften des Kristalls festzustellen“, sagt Andrei Pimenov. „Doch wenn man die Stärke des Magnetfelds erhöht, geschieht etwas Bemerkenswertes: Die Holmium-Atome ändern ihren Quantenzustand und bilden ein magnetisches Moment aus. Dadurch wird die innere Symmetrie des Kristalls gebrochen.“

Rein geometrisch betrachtet ist der Kristall noch immer symmetrisch, doch man muss auch den Magnetismus der Atome mitberücksichtigen, und der zerstört die Symmetrie. Deshalb kann nun die elektrische Polarisation des Kristalls mit einem Magnetfeld verändert werden. „Von einer Polarisation spricht man, wenn die positiven und negativen Ladungen im Kristall ein bisschen gegeneinander verschoben werden“, erklärt Pimenov. „Mit einem elektrischen Feld wäre das einfach zu erreichen – aber durch den magnetoelektrischen Effekt ist das auch mit einem magnetischen Feld möglich.“

Entscheidend: Nicht die Stärke, sondern die Richtung des Magnetfelds 

Je stärker das Magnetfeld, umso stärker seine Auswirkung auf die elektrische Polarisation. „Der Zusammenhang zwischen Polarisation und Magnetfeldstärke ist ungefähr linear, das ist nichts Ungewöhnliches“, sagt Andrei Pimenov. „Bemerkenswert ist allerdings: Der Zusammenhang zwischen der Polarisation und der Richtung des Magnetfelds ist stark nichtlinear. Wenn man die Richtung des Magnetfelds ein kleines bisschen dreht, kann die Polarisation völlig umkippen. Das ist eine neue Form des magnetoelektrischen Effekts, die man bisher noch nicht kannte.“ Eine einfache kleine Drehung entscheidet also darüber, ob das Magnetfeld die elektrische Polarisation des Kristalls verändern kann oder nicht.

Möglichkeit für neue Speichertechnologien

„Der magnetoelektrische Effekt wird für verschiedene technologische Anwendungen eine immer größere Rolle spielen“, ist Pimenov überzeugt. „In einem nächsten Schritt wollen wir versuchen, nicht elektrische Eigenschaften mit einem Magnetfeld zu verändern, sondern magnetische Eigenschaften mit einem elektrischen Feld. Das sollte grundsätzlich genauso möglich sein.“ 

Wenn das gelingt, wäre das eine vielversprechende neue Möglichkeit, Daten in Festkörpern zu speichern. „In magnetischen Speichern wie Computerfestplatten benötigt man heute magnetische Felder“, erklärt Pimenov. „Sie werden mit magnetischen Spulen erzeugt, das benötigt relativ viel Energie und Zeit. Gäbe es einen direkten Weg, die magnetischen Eigenschaften eines Festkörperspeichers mit einem elektrischen Feld zu schalten, wäre das ein Durchbruch.“  

Wer sich für weitere Einzelheiten und technische Details interessiert,  findet die englischsprachige und sehr technische Originalpublikation unter folgendem Link: L. Weymann et al., Unusual magnetoelectric effect in paramagnetic rare-earth langasite, npj Quantum Materials volume 5, Article number: 61 (2020).


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*