Neurocomputer: Russen bauen Gehirn nach

Forscher des Moscow Institute of Physics and Technology (MIPT) haben ein Gerät entwickelt, das wie die Neuronen im menschlichen Gehirn funktioniert. Es speichert Informationen und löscht sie wieder, wenn sie lange Zeit nicht abgerufen worden sind. [...]

Natürliche und ferroelektrische Synapse
Natürliche und ferroelektrische Synapse Grafik: Elena Khavina / MIPT

Das von den Forschern des MIPT entwickelte Gerät, ist als Memristor zweiten Grades bekannt. Ein Memristor ist ein elektrisches Bauelement, das zwischen seinen beiden Anschlüssen einen elektrischen Widerstand aufweist, der je nach Stromstärke, abhängig von der Richtung größer oder kleiner wird.

Schneller und sparsamer

Das Gerät beruht darauf, dass die Informationen in einem Netzwerk aus Neuronen gespeichert werden, die über Synapsen miteinander verknüpft sind. Die künstlichen Neuronen und Synapsen wiederum basieren auf Hafniumoxid. Sie sind der erste Schritt auf dem Weg zum einem Neurocomputer, der die natürliche Art zu lernen imitiert. Im Normalfall haben sie eine digitale Architektur wie jeder andere Computer auch. Sie nutzen mathematische Modelle, um das Netzwerk des Gehirns nachzubilden. Alternativ dazu kann jedes Neuron als Memristor dargestellt werden. Viele davon werden zu einem Netzwerk verknüpft. Eine solche Architektur ermöglicht weitaus schnellere Computer und senkt den Stromverbrauch.

Vereinfacht ausgedrückt, bedeutet ein hoher Widerstand im Memristor eine „Null„, ein kleiner Widerstand eine „Eins„. Genauso speichert das Gehirn eine Information. Wenn eine Synapse ein Signal an zwei Neuronen übermittelt, entspricht das der „Eins„, tut sie es nicht, ist es eine „Null„. In einem Gehirn werden die aktiven Synapsen gestärkt und die weniger genutzten geschwächt. Das nennt sich neuronaler Plastizität. Darunter versteht man die Eigenart von Synapsen, sich nutzungsabhängig zu verändern, um Prozesse zu optimieren. Dieses Phänomen sei die Basis für natürliches Lernen, unterstreichen die russischen Forscher.

Robuster als bisherige Systeme

Bei bisherigen Versuchen wurde die neuronale Plastizität mit der Zeit schwächer. „Unser System ist robuster“, sagt Anastasia Chouprik, die das ForscherTeam leitet. Sie nutzt die Tatsache aus, dass Hafniumoxid ferroelektrische Eigenschaften hat. Dessen Polarisation verändert sich, wenn es einem äußeren elektrischen Feld ausgesetzt ist. Wird es entfernt, behält das Material diesen Zustand bei – fertig ist die ferroelektrische Synapse.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*