Oracle: 2016 kommt Big Data im Mainstream an

Daten sind das Gold des Digitalen Zeitalters. Lange Zeit war die Nutzung und Analyse von Big Data ein Thema für Spezialisten – 2016 soll sie im Mainstream ankommen. Oracle identifiziert die größten Big Data-Trends für das neue Jahr. [...]

Big Data wird zur Spielwiese von künstlicher Intelligenz

2016 wird vermehrt künstliche Intelligenz bei der normalen Datenverarbeitung eingesetzt – unter anderem maschinelles Lernen, automatische Texterkennung und Property-Graphen. Auf diese Technologien kann im Big-Data-Umfeld bereits jetzt über API-Bibliotheken zugegriffen werden. Nun werden sie zum Standard in IT-Werkzeugen für Echtzeit-Analysen und Datenwissenschaft.

Das Internet der Dinge und die Cloud sind Treibstoff für Big Data

Big Data-Cloud-Dienste sind die heimlichen Treiber des Internets der Dinge (IoT). Cloud Services werden vermehrt Sensordaten erfassen und für Big-Data-Analysen und -Algorithmen bereitstellen. Diese Analysen werden dann beispielsweise in der Entwicklung genutzt. So werden Fertigungsunternehmen mit Hilfe hochsicherer IoT-Cloud-Services Produkte entwickeln, die auf Grundlage von Datenanalysen eigenständig Aktionen ausführen. Eingriffe durch Menschen werden noch seltener nötig.

Datenvorschriften fördern die Hybrid Cloud

Je mehr über die Herkunft der Daten bekannt ist – und das bezieht sich nicht nur auf einen Sensor oder eine Datenbank, sondern auch auf die „Nationalität“ der Daten –, desto leichter können Regierungen nationale Datenvorschriften durchsetzen. Internationale Unternehmen, die die Cloud nutzen wollen, geraten dadurch in ein Geflecht widerstrebender Interessen. Daher werden globale Unternehmen zunehmend Hybrid-Cloud-Infrastrukturen und regionale Rechenzentren etablieren. Diese stellen gewissermaßen den lokalen Vertreter eines größeren Cloud-Dienstes dar. Damit senken Unternehmen nicht nur Kosten, sondern stellen auch die Compliance sicher.

Fazit

An Big Data führt kein Weg mehr vorbei. Die Werkzeuge für datenbasierte Entscheidungen stehen bereit. Jetzt liegt es an den Unternehmen, schnell Nutzen aus den neuen Möglichkeiten zu ziehen. Im Jahr 2016 wird sich die Spreu vom Weizen trennen. Nur Unternehmen, die aus ihren Daten schnell die richtigen Erkenntnisse ziehen, werden sich im globalen Wettbewerb behaupten können. (pi)


Mehr Artikel

News

Große Sprachmodelle und Data Security: Sicherheitsfragen rund um LLMs

Bei der Entwicklung von Strategien zur Verbesserung der Datensicherheit in KI-Workloads ist es entscheidend, die Perspektive zu ändern und KI als eine Person zu betrachten, die anfällig für Social-Engineering-Angriffe ist. Diese Analogie kann Unternehmen helfen, die Schwachstellen und Bedrohungen, denen KI-Systeme ausgesetzt sind, besser zu verstehen und robustere Sicherheitsmaßnahmen zu entwickeln. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*