Es gibt viele Wege, aus Daten Gewinn zu ziehen. Vor der Auswahl der Technologie sollte man sich deshalb die Frage stellen: Was will ich mit der Datenanalyse erreichen? [...]
Der eigentliche Wert der Daten liegt in ihrer Auswertung. Der gesamte Prozess der Vorverarbeitung, Suche und Auswertung, also die systematische Nutzung von statistisch-mathematischen Methoden mit dem Ziel der Mustererkennung, wird unter dem Begriff Data Mining zusammengefasst. Technisch gesehen werden beim Data Mining Algorithmen verwendet, welche dabei helfen, Zusammenhänge zwischen den Daten herzustellen. Natürlich wird vorrangig nach Korrelationen gesucht, die zu Entscheidungen beitragen. Data Mining wird damit in jeder intelligenten Auswertung angewendet – die Frage ist nur, unter welchen Gesichtspunkten.
Business Intelligence (BI)-Plattformen umfassen Verfahren und Prozesse zur Sammlung, Auswertung und Darstellung von Daten mit dem Ziel, Kosten zu senken, Risiken zu minimieren und die Wertschöpfung zu vergrößern. Ausgewertet werden können alle möglichen KPIs – Informationen über das eigene Unternehmen, die Mitbewerber, Kunden oder die Marktentwicklung. Voraussetzung dabei: Anwender müssen genau festlegen, was sie untersuchen wollen – und was das Ziel ihrer Analyse ist. BI nutzt multidimensionale Analysen, um Daten in Zusammenhang miteinander zu bringen, Muster und Diskontinuitäten aufzuzeigen und vorher definierte Fragen zu beantworten.
Im Unterschied zu BI, das den Blick primär auf einzelne Kennzahlen richtet und viele punktuelle Einsichten bietet, gründet die innovative Big-Data-Technologie Process Mining auf einem umfassenderen Ansatz: Hier werden keine einzelnen KPIs, sondern Prozesse end-to-end und auf ihre Effizienz hin analysiert – und dabei exakt so dargestellt, wie sie in der Realität ablaufen. Process Mining sammelt die digitalen Prozesspuren im Unternehmen und setzt diese so zusammen, dass Prozessabläufe von Anfang bis Ende und in all ihren möglichen Variationen visualisiert werden können. Dank der neu gewonnenen Transparenz können Unternehmen Schwachstellen und Ineffizienzen sowie Abweichungen vom Soll in Echtzeit identifizieren – unabhängig davon, in welchem IT-System Process Mining genutzt wird.
Mit diesen Datenanalyse-Lösungen ist das Ende der Entwicklungen noch lange nicht erreicht. Big-Data-Technologien setzen immer mehr auf Automatisierung und Machine Learning. Die ersten Schritte in diese Richtung sind gemacht. Im Bereich Process Mining ermöglichen Machine-Learning-Funktionen schon heute die automatische Ursachenanalyse sowie die Ableitung von konkreten Handlungsempfehlungen aus den Ergebnissen der Prozessanalyse. Die Entwicklung steht hier noch am Anfang ihrer Möglichkeiten und lässt noch einiges erwarten. Künstliche Intelligenz wird für Unternehmen in Zukunft ein entscheidender Wettbewerbsvorteil sein. Mit wenig Aufwand möglichst viele Daten im Unternehmen nutzbar und für die gezielte Optimierung verfügbar zu machen – darum wird es künftig mehr denn je gehen. Und genau dabei unterstützt Process Mining.
Be the first to comment