Quanten, die Fehler verzeihen

Quantentechnologie wird praxistauglicher: An der TU Wien kann man nun Zustände von Stickstoff-Atomen umschalten, selbst wenn sich nicht alle Details des Experiments exakt kontrollieren lassen. Das könnte sich als nützlich für künftige Quantencomputer erweisen. [...]

„Der Quantenzustand tritt dann eine etwas kompliziertere Reise durch den Raum der möglichen Zustände an. Auch wenn er anfangs ein bisschen anders ausgesehen hat als gedacht, kommt er am Ende mit großer Sicherheit dort an, wo wir das wollen“, sagt Tobias Nöbauer. Im Experiment an der TU Wien konnte das Team zeigen, dass der computeroptimierte Puls die Erfolgswahrscheinlichkeit tatsächlich drastisch erhöht. So führt etwa ein optimierter Puls selbst dann noch sehr genau zum korrekten Ziel, wenn er mit einer doppelt überhöhten Leistung oder um eine halbe Oktave „verstimmten“ Frequenz abgespielt wird.

Man kann sich das so ähnlich vorstellen, wie die Aufgabe, mit einem fehlerbehafteten Wagen einen bestimmten Punkt zu erreichen. Angenommen, man fährt Richtung Norden und der Wagen zieht etwas nach rechts, dann fährt man östlich am Ziel vorbei. Man kann sich behelfen, indem man einfach doppelt so weit fährt, umkehrt und wieder zurückfährt. Wenn der Wagen auf dem Rückweg wieder nach rechts abdriftet, wird er diesmal nach Westen ziehen, den anfängliche Fehler teilweise korrigieren und ziemlich genau am gewünschten Ort ankommen. So ähnlich – wenn auch deutlich komplizierter – funktioniert die Optimierung des Mikrowellenpulses für das Quantensystem.  

ROBUSTHEIT UND SKALIERBARKEIT

Durch den optimierten Umschaltprozess kann man nun die Quanteneigenschaften der Stickstoffatome in den Diamantpartikeln viel besser nutzen. „Im Labor, in einem völlig kontrollierten Versuchsaufbau, kann man es schaffen, den Mikrowellenpuls exakt richtig einzustellen. Aber um diese Systeme technologisch in der Praxis anwenden zu können, ist Robustheit ganz entscheidend“, sagt Tobias Nöbauer. „Hochpräzise Quanten-Sensoren will man auch in komplizierten Umgebungen einsetzen können, zum Beispiel in einer biologischen Probe, die man nie exakt berechnen kann.“ Außerdem möchte man für viele Anwendungen, beispielsweise auch für hypothetische Quantencomputer, viele solche Quantensysteme miteinander verschalten. Dies Skalierbarkeit kann man nur erreichen, wenn man alle Fehlerquellen minimiert. Die optimale Kontrolle könnte die Stickstoffatome im Diamant daher zu einem noch heißeren Kandidaten für künftige quantentechnologische Anwendungen machen. (pi)


Mehr Artikel

News

Große Sprachmodelle und Data Security: Sicherheitsfragen rund um LLMs

Bei der Entwicklung von Strategien zur Verbesserung der Datensicherheit in KI-Workloads ist es entscheidend, die Perspektive zu ändern und KI als eine Person zu betrachten, die anfällig für Social-Engineering-Angriffe ist. Diese Analogie kann Unternehmen helfen, die Schwachstellen und Bedrohungen, denen KI-Systeme ausgesetzt sind, besser zu verstehen und robustere Sicherheitsmaßnahmen zu entwickeln. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*