Quantencomputer mit ultrakalten Molekülen

Forscher der Purdue University haben eine neue Art der ultrakalten Moleküle kreiert, die in Quantencomputern eingesetzt werden könnte. [...]

Das Expertenteam hat dabei zur Kühlung der Atome Laserstrahlen verwendet. „Es klingt paradox, aber man kann Laser dazu verwenden, kinetische Energie zu entziehen, was zu radikaler Abkühlung führt“, erklärt Wissenschaftler Yong P. Chen.

Die Temperatur der Lithium- und Rubidium-Atome, die im Experiment verwendet wurden, wurde dabei fast auf den absoluten Nullpunkt heruntergekühlt. Dieser liegt bei null Kelvin, was minus 273 Grad Celsius entspricht. Bei dieser Temperatur kommen die Atome beinahe zum Stillstand, was neue Arten von chemischen Interaktionen hervorbringt, die vorwiegend quantenmechanischer Natur sind.

Der Kühlungsprozess wird in einer magneto-optischen Falle durchgeführt, ein System, das mit Vakuumkammer, Magnetspulen und einer Reihe von Lasern arbeitet, um die Atome einzufangen und zu kühlen. „In ultrakalter Chemie bewegen sich die Moleküle wirklich langsam, dadurch haben sie lange Zeit, um miteinander zu interagieren“, erklärt Forscher Daniel S. Elliott.

Das Team um Chen und Elliott ist das erste seiner Art, das die Alkalimetalle Lithium und Rubidium verwendet hat – bisher wurden stets andere Alkalimetalle benutzt. Mit der Methode der Photoassoziation wurden die Atome zu einem Molekül fusioniert. Durch die unterschiedliche Beschaffenheit der beiden Atome kommt es zu einem Unterschied in der elektrischen Spannung innerhalb des Moleküls – es handelt sich dabei um ein polares Molekül, das einen Dipolmoment besitzt. Das Dipolmoment erlaubt die Interaktion zwischen Molekülen – je größer dieses ist, desto höher ist die Interaktion.

Aufgrund seines großen Dipolmoments ist das Lithium-Rubidium-Molekül potenziell für Quantencomputer geeignet. „Bei Quantencomputern ist es so, dass je größer das Dipolmoment ist, desto stärker ist die Interaktion zwischen den Molekülen – und diese Interaktion braucht man“, so Elliott. Anders als bei herkömmlichen Computern existieren nicht nur die Spannungszustände null und eins, sondern es kommt zur Überlagerung der Zustände und schließlich zur Quantenverschränkung. Das wiederum ist nur durch die Interaktion der Moleküle möglich.

Ein weiterer Vorteil: „Die Produktionsrate für Lithium-Rubidium-Moleküle ist viel größer als für andere Bi-Alkalimetall-Moleküle“, berichtet Chen. „Das war eine erfreuliche Überraschung. Es war bereits bekannt, dass sie das größte Dipolmoment unter den Bi-Alkalimetall-Molekülen haben, aber niemand hat erwartet, dass es so effizient hergestellt werden könnte.“ (pte)


Mehr Artikel

News

Public Key Infrastructure: Best Practices für einen erfolgreichen Zertifikats-Widerruf

Um die Sicherheit ihrer Public Key Infrastructure (PKI) aufrecht zu erhalten, müssen PKI-Teams, sobald bei einer Zertifizierungsstelle eine Sicherheitslücke entdeckt worden ist, sämtliche betroffenen Zertifikate widerrufen. Ein wichtiger Vorgang, der zwar nicht regelmäßig, aber doch so häufig auftritt, dass es sich lohnt, PKI-Teams einige Best Practices für einen effektiven und effizienten Zertifikatswiderruf an die Hand zu geben. […]

News

UBIT Security-Talk: Cyberkriminalität wächst unaufhaltsam

Jedes Unternehmen, das IT-Systeme nutzt, ist potenziell gefährdet Opfer von Cyberkriminalität zu werden, denn die Bedrohung und die Anzahl der Hackerangriffe in Österreich nimmt stetig zu. Die Experts Group IT-Security der Wirtschaftskammer Salzburg lädt am 11. November 2024 zum „UBIT Security-Talk Cyber Defense“ ein, um Unternehmen in Salzburg zu unterstützen, sich besser gegen diese Bedrohungen zu wappnen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*