Roboter-KI mit Hausverstand aus Graz

Eine neue Generation autonomer Roboter soll künftig Aufgaben selbstständig lösen können, auch dann, wenn Unvorhersehbares passiert. Informatiker der Technischen Universität Graz treiben mit Unterstützung des Wissenschaftsfonds FWF die Entwicklung der künstlichen Intelligenz voran und bringen den Robotern Hausverstand bei. [...]

Was Kinder spielend lernen und Erwachsene aufgrund ihrer Erfahrungen beherrschen, zum Beispiel auf unerwartete Situationen zu reagieren, stellt immer noch eine der großen Herausforderungen in der Robotik dar: Autonome Systeme sollen vom Menschen vorgegebene Aufgaben selbstständig lösen können. Besonders in kritischen Situationen wäre der Einsatz von solchen intelligenten Robotern von großer Bedeutung – etwa bei Umweltkatastrophen oder Industrieunfällen. Weltweit beschäftigen sich Wissenschafterinnen und Wissenschafter daher mit der Frage, wie Roboter auch in ungewöhnlichen und neuen Situationen ihre Ziele mit den ihnen verfügbaren Ressourcen eigenständig erreichen können. Auch Gerald Steinbauer von der Technischen Universität (TU) Graz arbeitet seit Jahren in der Grundlagenforschung an der Entwicklung des intelligenten und autonomen Roboters mit.

DER SCHLUSSFOLGERUNGSMECHANISMUS

In einem vor Kurzem abgeschlossenen Projekt des Wissenschaftsfonds FWF haben sich Steinbauer und sein Team am Institut für Software Technologie der Aufgabe gestellt, einem Roboter so etwas wie Hausverstand beizubringen. „In unserer Umwelt passieren immer wieder Überraschungen oder kleine Irrtümer, wie etwa dass ich im fünften Stock eines Gebäudes lande, statt im dritten. Wenn ein Roboter nicht merkt, dass er im falschen Stockwerk ist, kann er seine Aufgabe nicht erfüllen“, nennt Steinbauer ein einfaches Beispiel. In dem Projekt haben die Grazer Forscherinnen und Forscher nun eine Art Schlussfolgerungsmechanismus entwickelt, der es dem Roboter erlaubt, solche Irrtümer zu erkennen und daraus Reparaturaktionen für sein Wissen abzuleiten. „Wir haben Schlussfolgerungen mit dem sogenannten Situationskalkül in Logik abgebildet. Dieses ermöglicht, die von einem Agenten ausgeführten Aktionen und deren Effekte zu beschreiben“, erklärt Steinbauer.

DAS WELTBILD DES ROBOTERS BAUEN

Die Informatiker der TU Graz erstellen dabei laufend automatisch Diagnosen, indem sie beobachten, wo das Wissen des Roboters mit der aktuellen Situation nicht mehr zusammenpasst. Dabei konnten sie herausfinden, dass das Situationskalkül sowohl für die Überwachung und Diagnose genutzt werden kann als auch für die autonomen Entscheidungen des Roboters. Aus dem Wissen, was eine Aktion bewirkt, lernt der Roboter abzuleiten, was er als nächstes tun muss. Stimmt das Wissen des Roboters mit den Anforderungen in der realen Welt nicht mehr überein, weil sich eben eine Situation verändert hat, wird das „Weltbild“ des Roboters zurechtgerückt.

Sie sehen gerade einen Platzhalterinhalt von YouTube. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.

Mehr Informationen

„Wir versuchen in Einklang zu bringen, was der Roboter geplant hat und was wirklich passiert ist, indem wir es formal niederschreiben“, so Steinbauer. Im Test hat sich das Modell bereits bewährt: Ein Roboter, der mehrere Tage durchgehend im Forschungsinstitut mit einfachen Lieferaufgaben betraut wurde, ließ sich auch durch Tricks nicht irritieren.

DIE COMMON-SENSE-DATENBANK

Um die aufwändigen Codierungen solcher Modelle zu erleichtern, teilen die verschiedenen Forschungsgruppen weltweit inzwischen ihr Know-how. So stehen etwa Common-Sense-Datenbanken frei zur Verfügung. Auch die Grazer haben auf dieses Wissen zurückgegriffen, um ihre Modelle anzureichern. „Das sind Sammlungen von Wissen, das für den Menschen ganz trivial ist, zum Beispiel, dass ein Objekt nie an zwei Orten sein kann“, sagt Gerald Steinbauer. Die Informatiker wollen nun das Wissen des Roboters kontinuierlich ausbauen. Denn noch reicht dieses nicht aus, um sich in einer komplexen Welt zurechtzufinden.

RECHEN- UND ZEITINTENSIV

Hinzu kommen weitere Faktoren, die die Grundlagenforschung im Bereich der Robotik vor große Aufgaben stellt. Autonome Systeme auszutesten, verlangt den Computern enorme Rechenleistung ab. Diese „Computational Complexity“ ist noch sehr groß. „Da wir mit der Rechenleistung nicht zusammenkommen, können wir derzeit keine aufwändigen Beispiele durchtesten“, erläutert der Experte. Das bedeutet: Stößt der Roboter auf ein Problem, kann es Stunden oder Tage dauern, bis er sie lösen kann – Zeit, die im realen Leben nicht gegeben ist.

NOCH VIEL FORSCHUNG NOTWENDIG

Das spannende in der Robotik sei, so Gerald Steinbauer, das Wissen des Roboters mit den Anforderungen der Welt zusammenzubringen. Hier brauche es jedoch noch viel Grundlagenforschung, betont der Informatiker. Etwa in den Bereichen Wahrnehmung und Kognition seien noch viele grundlegende Fragen zu lösen. „Wir müssen verstehen, wie zum Beispiel biologische Systeme wirklich funktionieren“, betont Steinbauer in Hinblick auf die Umsetzung in der Praxis. Dass solide Grundlagenforschung der beste Wegbereiter für die angewandte Forschung ist, beweist unter anderem ein Startup, das Doktoranden aus Steinbauers Team gegründet haben. Auch die Beteiligung des Instituts für Software Technologie an Bridge-Projekten des Wissenschaftsfonds FWF und der Forschungsförderungsgesellschaft FFG soll ermöglichen, dass Innovation in der Anwendung Wurzeln schlagen kann. (pi)


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*