Sexismus in sozialen Medien automatisch erkennen

Sexismus ist ein weitreichendes gesellschaftliches Problem und hat insbesondere in den sozialen Medien in den letzten Jahren stark zugenommen. [...]

(c) FH St. Pölten / Martin Lifka Photography

Die Fachhochschule St. Pölten und das AIT Austrian Institute of Technology haben im Rahmen eines internationalen Wettbewerbs eine Methode entwickelt, die sexistische Äußerungen mithilfe Künstlicher Intelligenz automatisch erkennt.

Sexismus und seine Auswirkungen haben weitreichende Konsequenzen für die Gesellschaft. Dabei werden insbesondere Frauen, die in der Öffentlichkeit stehen, vor große Herausforderungen gestellt, wie aktuelle Studien zeigen. Soziale Medien treten hier als Beschleuniger auf und senken die Hemmschwellen für verbale Übergriffe.

Die FH St. Pölten und das AIT Austrian Institute of Technology haben im Rahmen des internationalen EXIST-Wettbewerbs (sEXism Identification in Social neTworks) eine Methode entwickelt, die die automatische Erkennung von sexistischen Äußerungen ermöglicht und dabei den dritten Platz belegt (aus 31 internationalen Teams). Das Tool basiert auf Methoden der künstlichen Intelligenz und nutzt Natural Language Processing (NLP) und Machine Learning, um Beiträge auf sozialen Medien semantisch zu untersuchen und zu klassifizieren.

„Ein zentrales Ziel unserer Forschung ist es, stets einen sinnvollen Beitrag zu leisten, um Probleme in unserer Gesellschaft zu lösen. Eine automatisierte Erkennung von sexistischen Äußerungen kann dazu beitragen, den Diskurs in den Sozialen Medien zu verbessern, Problembewusstsein zu stärken und Maßnahmen gegen diskriminierende Inhalte zu setzen“, so Matthias Zeppelzauer, Leiter der Forschungsgruppe Media Computing am Institut für Creative\Media/Technologies der FH St. Pölten.

Kategorisierung von Inhalten

Besonders herausfordernd bei der automatischen Erkennung von sexistischen Inhalten ist die Unterscheidung zwischen verschiedenen Kategorien von sexistischen Äußerungen und der Identifikation von ironischen oder sarkastischen Statements.

Die Datenbasis für die Klassifizierung lieferte der EXIST-Wettbewerb, der Teilnehmer*innen Postings auf den Plattformen „Twitter“ und „Gab“ zur Verfügung stellte. Dabei wurde nicht nur zwischen sexistischen und nicht sexistischen Inhalten unterschieden, sondern eine feine Kategorisierung sexistischer Inhalte vorgeschlagen. Die Postings, welche in englischer und spanischer Sprache vorlagen, wurden basierend auf deren Inhalt kategorisiert und in folgende Typen eingeteilt, die es automatisch zu unterscheiden galt: Ideologie und Ungleichheit, Stereotype und Herrschaft, Objektifizierung, sexuelle Gewalt, Misogynie und nicht-sexuelle Gewalt.

„Wichtig bei der Erkennung sexistischer Inhalte ist, dass wir nicht nur offensichtliche Formen von Sexismus automatisch identifizieren können, sondern auch subtile Formen und Anspielungen, die auf den ersten Blick übersehen werden könnten“, so Alexander Schindler, Leiter des NLP-Teams auf Seite des AIT.

Das Projektteam bestehend aus Studierenden als auch aus Forscher*innen des Center for Digital Safety & Security am AIT und der FH St. Pölten umfasste Mina Schütz, Jaqueline Böck, Daria Liakhovets, Djordje Slijepcevic, Armin Kirchknopf, Manuel Hecht, Johannes Bogensperger, Sven Schlarb, Alexander Schindler und Matthias Zeppelzauer.

Zusammenarbeit mit dem AIT

Auf Seite des AIT wurde die Initiative durch das Projekt defalsif-AI gefördert, welches im Rahmen des Sicherheitsforschungs-Förderprogramms KIRAS des Bundesministeriums für Landwirtschaft, Regionen und Tourismus (BMLRT) finanziert wird. Nähere Informationen zum Forschungsprojekt finden Sie unter https://www.defalsifai.at/.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*