So verbessern Unternehmen in 6 Schritten ihre Datenqualität

Die Qualität von Stamm- und Bewegungsdaten beeinflusst unter anderem, wie effizient Prozesse arbeiten und wie erfolgreich ein Unternehmen am Ende des Tages ist. Doch gerade mit der Digitalisierung nehmen die Herausforderungen in der Datenpflege deutlich zu – die Fehleranfälligkeit steigt. [...]

Hochwertige Daten sind die Basis für den Unternehmenserfolg. (c) Pixabay

Eine aktuelle Studie des VDMA belegt: Knapp „84 Prozent der Umfrageteilnehmer schätzen den […] Aufwand zur Eingabe, Suche und Pflege von Daten als hoch ein.“ Im gleichen Atemzug bemängeln 34 Prozent der Befragten fehlende oder qualitativ minderwertige Interessenten- und Kundenstammdaten – vor allem für den Vertrieb eine entscheidende Herausforderung.

Damit rücken die Themen Datenqualität und IT-Lösungen für eine optimierte Datengüte immer mehr in den Fokus. Denn mit einer individuellen Strategie lassen sich einerseits kostspielige Fehler vermeiden, andererseits nimmt das Vertrauen in die eigenen Daten zu. Alles zusammen bildet die ideale Grundlage, um bessere Entscheidungen zu treffen. Wie Unternehmen ihren Weg zu mehr Datenqualität gestalten, erklärt proALPHA in 6 Schritten:

1. Erfolgsentscheidende Prozesse herausfiltern

Zunächst sollten Unternehmen verstehen, in welchen Abläufen fehlerhafte oder unvollständige Daten besonders ins Gewicht fallen. Das sind die Bereiche, in denen mit einer höheren Datenqualität der schnellste Mehrwert erzielt werden kann. So können beispielsweise Lieferrisiken durch gepflegte Wiederbeschaffungszeiten, Lieferantenadressen und Konditionen minimiert werden. Auch die korrekte Übernahme von Teiledaten in die einzelnen Arbeitsaufträge kann Kosten und Mehraufwände deutlich reduzieren.

Im Zuge einer ersten Analyse ist zudem zu prüfen, ob alle Abteilungen jederzeit und ortsunabhängig schnellen Zugang zu relevanten Informationen haben.

2. Qualitätskriterien definieren

Je nach Unternehmen und Abteilung können die Kriterien für eine hohe Datenqualität sehr unterschiedlich aussehen. Dabei sollte vor allem nach verschiedenen Arten differenziert werden: Bewegungsdaten stellen beispielsweise andere Anforderungen an die notwendigen Informationen als Stammdaten. Zudem ist es wichtig, zwischen Kunden- und Interessentendaten zu unterscheiden. Hier gilt es sich die Frage zu stellen: Brauche ich von einem potenziellen Kunden bereits beim ersten Kontakt einen umfangreichen Datensatz – oder sind Name und Telefonnummer des Ansprechpartners zunächst ausreichend?

3. Vorhandene Datenpools prüfen

Zur Kontrolle existierender Datensätze ist es wichtig, verschiedene Prüfkriterien heranzuziehen. Zu den offensichtlichen zählen beispielsweise die Vollständigkeit und Richtigkeit. Doch auch weitere Aspekte können in die Bewertung einfließen: Werden zum Beispiel die jeweiligen Archivierungszeiten für Dokumente eingehalten? Und kommt das Unternehmen den Löschpflichten für nicht mehr benötigte Informationen nach?

Eine genaue Analyse und die konsequente Bereinigung der eigenen Datenbanken lässt Unternehmen in erfolgskritischen Prozessen effizienter handeln. Außerdem wird damit die Compliance des Unternehmens gestärkt – nach innen und außen.

4. Dubletten beseitigen

Wenn es um Qualität geht, sind häufig die Daten selbst der entscheidende Schwachpunkt. Denn für automatisierte Prozesse und effiziente Abläufe werden aktuelle, eindeutige und vor allem vollständige Informationen benötigt. Dubletten sind bei der Prüfung ein häufiges Problem. Sie vergrößern unnötig den Datenbestand, verringern die Effizienz und erhöhen das Risiko von Fehlinterpretationen. Deshalb ist es wichtig, sie zu eliminieren und in Zukunft keine neuen mehr anzulegen.

5. Eindeutige Daten erzeugen

Die doppelte Datenhaltung in mehreren voneinander unabhängigen Systemen ist in der Praxis gang und gäbe. Doch das bringt verschiedene Nachteile mit sich: Einerseits bedeutet die manuelle Übertragung in das jeweils andere Programm einen hohen Mehraufwand – andererseits können dadurch Inkonsistenzen und widersprüchliche Datensätze entstehen. Mit modernen Integrationstechniken und professioneller Prüfsoftware (Data Quality Manager) lassen sich solche Fehler gezielt vermeiden.

6. Daten kontinuierlich pflegen und prüfen

Für das Projekt Datenqualität gibt es kein Enddatum. Denn Angebots- und Bestellinformationen müssen ebenso wie Serien- und Chargennummern von Teilen fortwährend gepflegt werden. Nur so ist es möglich, die Informationsqualität langfristig zu verbessern. Dafür stehen verschiedene Werkzeuge zur Verfügung: regelmäßige automatisierte Qualitätskontrollen, Plausibilitätsprüfungen, Workflows, Datenbereinigungen und festgelegte Regeln für neu erfasste Daten.


Mehr Artikel

Frauen berichten vielfach, dass ihre Schmerzen manchmal jahrelang nicht ernst genommen oder belächelt wurden. Künftig sollen Schmerzen gendersensibel in 3D visualisiert werden (c) mit KI generiert/DALL-E
News

Schmerzforschung und Gendermedizin

Im Projekt „Embodied Perceptions“ unter Leitung des AIT Center for Technology Experience wird das Thema Schmerzen ganzheitlich und gendersensibel betrachtet: Das Projektteam forscht zu Möglichkeiten, subjektives Schmerzempfinden über 3D-Avatare zu visualisieren. […]

News

KI ist das neue Lernfach für uns alle

Die Mystifizierung künstlicher Intelligenz treibt mitunter seltsame Blüten. Dabei ist sie weder der Motor einer schönen neuen Welt, noch eine apokalyptische Gefahr. Sie ist schlicht und einfach eine neue, wenn auch höchst anspruchsvolle Technologie, mit der wir alle lernen müssen, sinnvoll umzugehen. Und dafür sind wir selbst verantwortlich. […]

Case-Study

Erfolgreiche Migration auf SAP S/4HANA

Energieschub für die IT-Infrastruktur von Burgenland Energie: Der Energieversorger hat zusammen mit Tietoevry Austria die erste Phase des Umstieges auf SAP S/4HANA abgeschlossen. Das burgenländische Green-Tech-Unternehmen profitiert nun von optimierten Finanz-, Logistik- und HR-Prozessen und schafft damit die Basis für die zukünftige Entflechtung von Energiebereitstellung und Netzbetrieb. […]

FH-Hon.Prof. Ing. Dipl.-Ing. (FH) Dipl.-Ing. Dr. techn. Michael Georg Grasser, MBA MPA CMC, Leiter FA IT-Infrastruktur der Steiermärkischen Krankenanstaltengesellschaft m.b.H. (KAGes). (c) © FH CAMPUS 02
Interview

Krankenanstalten im Jahr 2030

Um sich schon heute auf die Herausforderungen in fünf Jahren vorbereiten zu können, hat die Steiermärkische Krankenanstaltengesellschaft (KAGes) die Strategie 2030 formuliert. transform! sprach mit Michael Georg Grasser, Leiter der Fachabteilung IT-Infrastruktur. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*