TU Graz: Neuer Ansatz für energieeffiziente KI-Anwendungen

Forscher der TU Graz haben eine neue Design-Methode für besonders energieschonende künstliche neuronale Netzwerke gezeigt, die mit extrem wenigen Signalen auskommen, und - ähnlich wie der Morse-Code - auch den Pausen zwischen den Signalen eine Bedeutung zuweisen. [...]

Mit den Ergebnissen liefern die beiden Informatiker der TU Graz einen neuen Ansatz für Hardware, die wenige Spikes und damit einen geringen Energieverbrauch mit State-of-the-Art-Performances von KI-Anwendungen verbindet (c) Forschungszentrum Jülich

Die meisten neuen Errungenschaften der Künstlichen Intelligenz (KI) erfordern sehr große neuronale Netze. Sie bestehen aus hunderten Millionen von Neuronen, die in mehreren hundert Schichten angeordnet sind, also sehr „tiefe“ Netzstrukturen haben. Diese großen, tiefen neuronalen Netze verbrauchen im Computer sehr viel Energie. Besonders energieintensiv sind jene neuronalen Netze, die in der Bildklassifizierung (zum Beispiel Gesichts- und Objekterkennung) eingesetzt werden, da sie in jedem Zeittakt sehr viele Zahlenwerte mit großer Genauigkeit von einer Neuronenschicht zur nächsten senden müssen.

Der Informatiker Wolfgang Maass hat gemeinsam mit seinem Doktoranden Christoph Stöckl nun eine Design-Methode für künstliche neuronale Netzwerke gefunden, die den Weg zu einer energieeffizienten leistungsfähigen KI-Hardware (zum Beispiel Chips für Fahrassistenzsysteme, Smartphones und anderen Mobile Devices) ebnet. Die beiden Forscher des Instituts für Grundlagen der Informationsverarbeitung der TU Graz haben künstliche neuronale Netzwerke in Computer-Simulationen zur Bildklassifizierung derart optimiert, dass die Neuronen – ähnlich wie Neurone im Gehirn – nur relativ selten Signale aussenden müssen und eben diese Signale sehr einfach sind.

Die nachgewiesene Klassifizierungsgenauigkeit von Bildern mit diesem Design kommt trotzdem sehr nahe an den aktuellen Stand der Technik derzeitiger Bildklassifizierungstools heran.

Menschliches Gehirn als Vorbild

Maass und Stöckl ließen sich dabei von der Arbeitsweise des menschlichen Gehirns inspirieren. Dieses verarbeitet mehrere Billionen Rechenoperationen in der Sekunde, benötigt dafür aber nur circa 20 Watt. Möglich wird dieser geringe Energieverbrauch durch die zwischenneuronale Kommunikation mittels sehr einfacher elektrischer Impulse, sogenannter Spikes. Die Information wird dabei nicht nur durch die Anzahl der Spikes, sondern auch durch ihre zeitlichen variablen Muster kodiert. „Man kann sich das vorstellen wie einen Morse-Code. Auch die Pausen zwischen den Signalen übertragen Informationen“, erklärt Maass.

Dass eine Spike-basierte Hardware den Energieverbrauch von Anwendungen mit neuronalen Netzen reduzieren kann, ist nicht neu. Dies konnte aber bisher nicht für die sehr tiefen und großen neuronalen Netze realisiert werden die man für wirklich gute Bildklassifikation benötigt.

In der Design-Methode von Maass und Stöckl kommt es nun bei der Informationsübertagung nicht nur darauf an, wie viele Spikes ein Neuron aussendet, sondern auch, wann das Neuron diese Spikes aussendet. Die Zeit beziehungsweise die zeitlichen Abstände zwischen den Spikes kodieren sich praktisch selbst und können daher sehr viel zusätzliche Information übertragen. „Wir zeigen, dass mit wenigen Spikes – in unseren Simulationen sind es durchschnittlich zwei – genauso viel Informationen zwischen den Prozessoren vermittelt werden können wie in energieaufwendiger Hardware“, so Maass.

Mit den Ergebnissen liefern die beiden Informatiker der TU Graz einen neuen Ansatz für Hardware, die wenige Spikes und damit einen geringen Energieverbrauch mit State-of-the-Art-Performances von KI-Anwendungen verbindet. Die Ergebnisse könnten die Entwicklung von energieeffizienter KI-Anwendungen drastisch beschleunigen und werden unter anderem im Journal Nature Machine Intelligence beschrieben.

*Bernhard Lauer ist unter anderem freier Redakteur der dotnetpro und betreut hier beispielsweise die Rubrik Basic Instinct. Mit Visual Basic programmiert er privat seit der Version 1.0.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*