Übersetzer im Vergleich: Was DeepL & Co. können

Übersetzungs-Tools wie DeepL, Google Translate oder Systran beherrschen ihr Handwerk heute immer besser. Sich allein darauf zu verlassen, ist in der geschäftlichen Kommunikation allerdings riskant. [...]

img-1
Übersetzungs-Tools können dabei helfen, Kommunikationsbarrieren zu beseitigen. Lesen Sie, welche Anbieter zu empfehlen sind und wo dabei die Fallstricke liegen (c) pixabay.com

Maschinelle Übersetzung oder Machine Translation ist schon seit den 1960er Jahren ein Thema. Zunächst beschäftigte sich nur die Forschung damit, dann – mit Aufkommen von Google Translate und den damit erzeugten oft unbeabsichtigt unterhaltsamen Ergebnissen – auch die Medien. 2016 erfolgte der Durchbruch für anwendungsfähige neuronale Machine Translation. Eine rasante Entwicklung für Sprachen und Services kam in Gang.

Heute sind maschinelle Übersetzungen an der Tagesordnung. Nutzer können beliebige Texte und sogar Office-Formate in frei verfügbare Machine-Translation-Systeme eingeben und erhalten innerhalb von Sekunden ein Ergebnis. Der schnelle Informationsgewinn wird deutlich beschleunigt – und das multilingual.

Übersetzungs-Tools: Fallstricke

„Für Englisch reicht uns jetzt DeepL, da lesen wir nochmal drüber und dann passt das“ – diesen Satz haben Sie sicher auch schon gehört. Mit Blick auf Zeit und Kosten nutzen Unternehmen diese und andere Übersetzungs-Tools mittlerweile auch für die offizielle Unternehmenskommunikation. Doch Vorsicht: Kein Machine-Translation-System schafft es bis dato, Präsentationen und Dokumentationen, Fach- und Produkttexte fehlerfrei und vor allem konsistent zu übersetzen.

Die Nutzung birgt einige Risiken. Das gilt für das von vielen gut beherrschte Englisch, vor allem aber für Texte in Sprachen, die man nicht kennt, also auch nicht überprüfen kann. Grobe Schnitzer können hier das Unternehmens-Image beschädigen. Sie sind zudem konkrete Fehlerquellen für Anwendungen und Produktionen. Angesichts der neuen, begeisternden Möglichkeiten durch DeepL und Co. sind sich deren Nutzer dessen oft nicht bewusst. Die Sache mit den Online-Übersetzern hat gleich sieben Haken:

  • Haken 1: Kleine, teils subtile Fehler. Ein ausgelassenes „nicht“, ein falscher Bezug, unbekannte Wörter, die nicht übersetzt oder als Fantasiebegriffe ausgegeben werden: All das fällt oft nicht gleich ins Auge, ändert aber Kontext und Bedeutungen.
  • Haken 2: Passagenweise Fehler. Manchmal werden Satzteile ausgelassen oder Texte frei ergänzt, was vor allem in komplett fremden Sprachen nicht auffallen wird.
  • Haken 3: Fehlerquelle Textstruktur. Texte haben im Original oft Umbrüche (Hard Returns), die nicht gleich erkennbar sind. Für das Machine-Translation-System verändern sich damit aber Sinnzusammenhänge. Es wird versuchen, jeden Textteil für sich sinnvoll zu übersetzen.
  • Haken 4: Missachteter Datenschutz. Nutzer geben arglos alles in frei verfügbare Machine-Translation-Systeme ein. Doch diese speichern die Texte, um sie für Re-Training und Lernen zu nutzen. Das mag egal sein, wenn es um den Speiseplan der Kantine geht, bei internen Informationen, Forschungsergebnissen und Patentanmeldungen wird es dagegen schnell kritisch.
  • Haken 5: Mangelnde Spezifikation. Unternehmensspezifisch korrekte Übersetzungen brauchen entsprechend trainierte Maschinen. Dies setzt viel Trainingsmaterial und einen hohen Aufwand voraus, der in der Kosten-Nutzen-Relation stimmen muss. Frei verfügbare Maschinen liefern zwar schnell und günstig Ergebnisse, können aber weder die benötigte Terminologie noch individuelle Stilvorgaben abbilden.
  • Haken 6: Mangelnde Reproduzierbarkeit. Freie Machine-Translation-Systeme übersetzen heute anders als morgen, weil sie kontinuierlich lernen. Ein Unternehmenstext kann also in sechs Monaten anders ausgegeben werden, wenn er aufgrund einer Überarbeitung erneut gebraucht wird.
  • Haken 7: Sprachunterschiede. Systeme für maschinelle Übersetzungen liefern für einige Sprachen gute Ergebnisse, sind für andere aber kaum nutzbar. Je nach Größe des Trainingskorpus (Umfang verfügbarer Trainingsdaten) und Komplexität der Sprache können bei unterschiedlichen Machine-Translation-Anbietern unterschiedliche Ergebnisse entstehen.

Machine Translation: DeepL vs. Systran vs. SDL

  • DeepL: Vergleicht man Anwendungen und Möglichkeiten, gibt es einige Genre-prägende Machine-Translation-Systeme, allen voran DeepL (FAQ), den Gamechanger. Wie kein anderes System für maschinelle Übersetzungen hat DeepL den Markt umgekrempelt und schneidet in den meisten Vergleichen am besten ab. Das Übersetzungs-Tool lernt schnell und ist in einer Basisversion frei verfügbar. Es bietet eine Auswahl von aktuell 24 Sprachen, darunter je zwei Englisch- und Portugiesisch-Varianten (für UK und USA beziehungsweise Portugal und Brasilien). Es handelt sich um ein deutsches Unternehmen mit Servern in Europa. Datenschutz wird erst in der Pro-Version als Kauf-Abo gewährleistet.
  • Systran: Als „Übersetzungstool für Fachleute“ positioniert sich Systran, das schon seit 40 Jahren am Markt verfügbar ist und alle Entwicklungen mitgemacht hat. Systran bietet eine große Sprachvielfalt, auch wenn vieles über Relaissprachen geht. Kunden können die Maschine individuell trainieren lassen oder vorgefertigte domänenspezifische Maschinen nutzen, die mit bestimmten Sachgebietstexten trainiert wurden. Ähnlich aufgestellt sind zum Beispiel auch die Anbieter KantanMTGlobalese, oder Tilde.
  • SDL Language Cloud: Und dann gibt es Machine-Translation-Systeme, die aus der Übersetzungsbranche hervorgegangen sind, wie zum Beispiel SDL Language Cloud. Sie offerieren eine direkte Integration in marktführende CAT-Tools (Computer-Aided Translation), die von Übersetzern weltweit direkt und arbeitserleichternd genutzt werden können – aber auch die Gefahr bergen, dass maschinelle Übersetzung verdeckt im Hintergrund läuft und als klassische Übersetzung deklariert und verkauft wird.

Welche Unterschiede bei der Nutzung auftreten, veranschaulicht ein Vergleich der drei genannten Systeme für maschinelle Übersetzungen, mit denen jeweils die gleichen niederländischen Kurztexte aus dem Bereich Software übersetzt wurden. Schon die erste Überprüfung zeigt: Ausgelassene Inhalte, Schwierigkeiten mit Sonderzeichen, Platzhalter und Tags. Zwei von drei Maschinen mischen die Anredeform, insgesamt weicht der Output teilweise voneinander ab:

img-2
Die Übersetzung von deutschen Kurztexten ins Niederländische zeigen den Interpretationsspielraum, den sich die Systeme erlauben (c) oneword.de

Maschinelle Übersetzung: Erfolgsfaktoren

Machine Translation ist auch bei Sprachdienstleistern angekommen. Sie hilft, Übersetzungen – vor allem in großer Stückzahl – schnell und günstig anbieten zu können. Entscheidend hierfür sind drei Faktoren.

  1. Machine Translation + Post-Editing (MTPE): Für Ergebnisse, die mit der Humanübersetzung vergleichbar sind, braucht es ausgebildete Post-Editoren. Gemeint sind muttersprachliche Übersetzer und Linguisten, die maschinelle Vorübersetzungen prüfen und systematisch nachbearbeiten. Sie müssen mit dem Kontext vertraut sein und den Zeit- und Kostenaspekt im Blick behalten. Je nach Textsorte und Sprache fallen unterschiedliche Korrekturen an. Erfahrungsgemäß werden mindestens 25 Prozent, meistens aber bis zu zwei Drittel des maschinelle Ergebnisses angepasst beziehungsweise überarbeitet. Das gilt auch für Texte, die auf den ersten ungeübten Blick gut aussehen.
  2. Terminologie und Terminologie-Management: Im Gegensatz zu trainierten Algorithmen kennen die allgemein verfügbaren Übersetzungsmaschinen keine unternehmensspezifische Terminologie. Sie geben Texte je nach gelerntem Wortschatz und Kontext von einem Satz zum anderen inkonsistent aus. Für eine konsistente und korrekte Kommunikation mit Kunden, Geschäftspartnern und Kollegen ist eine übergeordnete Instanz in Form einer Terminologie-Datenbank nötig, die die spezifische Sprache eines Unternehmens abbildet und klare Vorgaben macht.
  3. Translation Memory: Sind Texte bereits übersetzt worden, oder sie liegen in ähnlichen Varianten vor, müssen sie nicht neu übersetzt, sondern lediglich im Kontext geprüft und überarbeitet werden. Übersetzungen werden dafür in Translation-Memory-Systemen (TMS) gespeichert und neue Texte mit diesen abgeglichen. Auch ähnliche Sätze, in denen vielleicht drei Wörter anders sind, werden aus dem TMS übernommen und angepasst. Um zu verhindern, dass vorhandene Texte, ältere Broschüren etwa, komplett anders aussehen, braucht es das produktive Zusammenspiel aus Übersetzungsspeicher und Abfrage ans Machine-Translation-System für alle Textpassagen.

Im Idealfall werden für die professionelle Verwendung maschineller Übersetzungen alle drei Komponenten genutzt – vor allem deren Synergien untereinander. Trotz dieser Fortschritte ist der menschliche Übersetzer keineswegs überflüssig. Fehlerfrei ist bis dato noch kein System für maschinelle Übersetzung und Posteditoren nehmen immer noch eine Schlüsselrolle ein. Gute Übersetzungen in einem wirtschaftlichen Umfeld verlangen nicht nur sprachliches, sondern auch technisches und auch wirtschaftliches Know-how.

Was heißt all das für professionelle Übersetzerinnen und Übersetzer? Machine-Translation-Systeme sind nicht als Konkurrenz und Gefahr zu sehen, sondern als Produktivitätsfaktor und neues Betätigungsfeld. Unternehmen werden mit den kostenlosen Systemen in der professionellen Kommunikation schnell an ihre Grenzen stoßen. Sie sollten auf jeden Fall auf kostenpflichtige Abos, trainierte Maschinen oder versierte Sprachdienstleister setzen. In der Geschäftskommunikation sollte nicht an der falschen Stelle gespart werden, es gilt vielmehr Sprachverwirrungen und Inkonsistenzen, Missverständnisse und folgenschwere Anwendungsfehler zu vermeiden. Deren Kosten wären um ein Vielfaches höher.

Sie sehen gerade einen Platzhalterinhalt von YouTube. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.

Mehr Informationen

*Andrea Modersohn ist Geschäftsführende Gesellschafterin der oneword GmbH in Böblingen.

**Jasmin Nesbigall ist Fachleiterin MTPE/Terminologiemanagement bei oneword und eine der Pionierinnen für das Einbinden von KI-Technologien in moderne Übersetzungsangebote.  


Mehr Artikel

Ass. Prof. Dr. Johannes Brandstetter, Chief Researcher bei NXAI (c) NXAI
News

KI-Forschung in Österreich: Deep-Learning zur Simulation industrieller Prozesse

Als erstes Team weltweit präsentiert das NXAI-Forscherteam um Johannes Brandstetter eine End-to-End-Deep-Learning Alternative zur Modifizierung industrieller Prozesse, wie Wirbelschichtreaktoren oder Silos. Das Team strebt schnelle Echtzeit-Simulationen an, plant den Aufbau von Foundation Models für Industriekunden und fokussiert sich im nächsten Schritt auf die Generalisierung von Simulationen. […]

img-6
News

Die besten Arbeitgeber der Welt

Great Place To Work hat durch die Befragung von mehr als 7,4 Millionen Mitarbeitenden in den Jahren 2023 und 2024 die 25 World’s Best Workplaces identifiziert. 6 dieser Unternehmen wurden auch in Österreich als Best Workplaces ausgezeichnet. […]

img-7
News

ventopay als Vorreiter der digitalen Transformation

Bei der diesjährigen Verleihung des Digitalpreises „DIGITALOS“ wurde das oberösterreichische Softwareunternehmen ventopay als Sieger in der Kategorie „Digitale Transformation“ ausgezeichnet. Der Preis geht an Unternehmen, die ihre Geschäftsmodelle erfolgreich digitalisiert und zukunftsweisende Lösungen für ihre Branche entwickelt haben. […]

1 Comment

  1. Korrekt übersetzen können die alle nicht, dazu bieten sie noch nicht mal die einzig wichtige Sprache an, meint die, die südlich der Trennlinie, die die niederen von den höheren Lebensformen trennt, gesprochen wird. ISO 639-3 ‚bar‘, die haben nur minderwertige Sprachen wie ISO 639-3 ‚deu‘ im Angebot. Korrekterweise müsste es da ‚Nordbairisch‘, ‚Mittelbairisch‘ und ‚Südbairisch‘ geben. Wobei sie Westmittelbairisch weglassen können, das wurde jahrhundertelang versaut, wobei der Mist in der ostmittelbairischen Metropole jetzt auch schon angeht, die im westmittelbairischen Sprachraum gelegene Metropole ist da nur ein paar Jahrhunderte voraus.

Leave a Reply

Your email address will not be published.


*