70 Prozent der Unternehmen fürchten um ihre Reputation, wenn sie Datenanalyse betreiben. KPMG gibt in einer Studie sieben Tipps, wie Anwender mit dem Problem umgehen können. [...]
Der Titel verrät bereits, dass mit der Datenanalyse insbesondere Vertrauensfragen verknüpft sind. Dass es eine große Skepsis der Verbraucher gegenüber der Datennutzung von Unternehmen gibt, ist bekannt. Die Studie zeigt, dass sich diese Bedenken an der Spitze der Firmen spiegeln. In den Vorstandsetagen fehlt nämlich ebenfalls das Vertrauen, dass im eigenen Haus sorgsam und zielführend mit Daten umgegangen wird. Ein zentrales Ergebnis: 70 Prozent der Unternehmen weltweit sagen, dass sie sich durch die Analyse von Daten Risiken bezüglich ihrer Reputation aussetzen.
Unternehmen hätten das Potenzial von Echtzeitanalysen, intelligenten Suchagenten, Dashboards und lernenden Maschinen erkannt, konstatieren die Analysten. „Aber: Es mangelt an Vertrauen in die entsprechenden Analysen“, so KPMG. „Besonders deutsche Entscheider sind skeptisch, dass Daten in ihrem Unternehmen ethisch korrekt, akkurat und sicher analysiert werden.“ Jedes zweite Unternehmen fürchte, dass Datenanalysen dem eigenen Ruf schaden können.
Wie erwähnt sind die deutschen Resultate schlechter als der globale Durchschnitt, aber in der tendenziellen Grundaussage gehen beide in die gleiche Richtung. Das gilt auch für einen weiteren Aspekt, für den hier erneut die Ergebnisse aus Deutschland angeführt werden. Demnach ist das Vertrauen am Anfang des Daten-Lebenszyklus am größten und sinkt dann im Verlauf drastisch.
Nach Meinung der Analysten sollten Firmen einen systematischen Vertrauensansatz wählen, der den gesamten Lebenszyklus der Analyse umspannt und auf vier Ankern basiert. Jeder dieser vier Anker sei über den gesamten Lebenszyklus hinweg relevant, betont KPMG: von der Datenbeschaffung über die Vorbereitung und Mischung der Daten sowie die Analyse und Modellierung bis hin zur Nutzung und schließlich zur Messung der Wirksamkeit. Den Ankern sind jeweils Leitfragen und Befunde aus der globalen Studie zugeordnet:
Leitfragen: Sind die fundamentalen Baustein der Datenanalyse gut genug? Wie gut verstehen Unternehmen die Rolle der Qualität bei der Entwicklung und Steuerung von Tools, Daten und Analysen?
Leitfragen: Funktioniert die Analyse wie beabsichtigt? Kann das Unternehmen Genauigkeit und Nutzbarkeit des Outputs bestimmen?
Leitfragen: Wird Datenanalyse auf akzeptable Weise angewendet? Wie gut steht das Unternehmen in Einklang mit Regulierungen und ethischen Prinzipien?
Leitfragen: Wird der Betrieb langfristig optimiert? Wie gut gelingt es der Firma, während des gesamten Analyse-Lebenszyklus gute Governance und Sicherheit zu gewährleisten?
„Für den Aufbau von Vertrauen gibt es keine Roadmaps, keine Software-Lösungen und keine perfekten Antworten“, heißt es in der Studie. Gleichwohl lassen sich laut KPMG Best Practices und Praxisbeispiele finden, die Anwender inspirieren können. Sieben überdenkenswerte Ideen haben die Analysten als Empfehlungen zusammengestellt:
- 1. Mit den Grundlagen anfangen: die Vertrauenslücken bewerten. Es gilt zunächst herauszufinden, in welchen Feldern vertrauensbasierte Analyse tatsächlich geschäftskritisch ist. Auf diese Felder sollte man sich konzentrieren. KPMG weist darauf hin, dass Schlüsselrisiken oft mit wenigen Veränderungen vermindert werden können. Manchmal genüge die Verwendung einfacher Checklisten.
- 2. Die Richtung definieren: Ziele klären und in Einklang bringen. Zu gewährleisten ist ein klar bestimmter Zweck der Sammlung und Analyse von Daten. Leistung und Wirkung der Datenanalyse sollten messbar sein. Ferner sei wichtig, dass Ziele und Anreize der für die Datenanalyse Verantwortlichen mit jenen der User und der Betroffenen in Einklang stehen. Fehlende Klarheit könne zu Misstrauen oder einem nicht zufriedenstellenden ROI führen, warnt KPMG.
- 3. Das Bewusstsein heben: internes Engagement steigern. Stakeholder in Schlüsselstellungen sollten involviert und multidisziplinäre Teams aufgestellt werden. In ihren sollten Datenanalyse-Spezialisten sowie Mitarbeiter aus der IT und den Fachbereichen zu finden sein.
- 4. Expertise aufbauen: interne Datenanalyse-Kultur entwickeln. Diese dient als erster Vertrauensgarant. Konkret gilt es hier, Lücken und Potenziale bei Governance, Struktur und Prozessen zu identifizieren. Sichergestellt sein sollte Expertise in Qualitätsgarantie von Analysen, etwa durch Experimental Design, A|B Testing und andere Validierungsinstrumente. Vertrauen in Daten und ihre Analyse sollte letztlich zum Wert im Herzen des Unternehmens entwickelt werden.
- 5. Transparenz stimulieren: die „Black Box“ für andere Augen öffnen. Hierfür gibt es laut KPMG viele Möglichkeiten: funktionsübergreifende Teams, Kontrolle durch Dritte und Peer Reviews, Seite im Wiki-Stil, Motivation von Whistleblowern und eine Stärkung der Qualitätssicherungsprozesse. Entscheidend ist es nach Ansicht der Analysten, jede einzelne Herausforderung bei der Datenanalyse für sich zu überprüfen.
- 6. Eine Rundum-Sicht anstreben: Ökosysteme, Portfolios und Communities aufbauen. Um Vertrauen aufzubauen, muss laut KPMG über traditionelle Systemgrenzen, organisatorische Silos und enge Business Cases hinweg geschaut werden. Das ganze Ökosystem gehört in den Blick, für die Risiko- und Wertbemessung bietet sich ein Portfolio-Ansatz an.
- 7. Innovativ sein: Experimente ermöglichen. Datenanalyse-Teams sollten Innovationen vorantreiben und verschiedene Wege ausprobieren dürfen, ohne große Angst vor einem Scheitern haben zu müssen. „Bauen Sie ein Daten-Innovationslabor auf, dass Data Scientist und Business-Leuten das schnelle Testen neuer Ideen ermöglicht“, rät KPMG den Anwendern. Man sollte immer daran denken, dass es auch hinter den spezifischen Performance-Zielen eines Projektes einen weiteren ROI geben könnte. Damit er gefunden wird, benötigen die beteiligten Mitarbeiter die richtigen Anreize.
Be the first to comment