Vorausschauendes Application Monitoring

Lori MacVittie, Principal Technical Evangelist bei F5, erklärt, warum Predictive Application Performance Monitoring die Benutzererfahrung und damit den gesamten Geschäftserfolg verbessert. [...]

Predictive APM ist eine intelligente Lösung, um frühzeitig Maßnahmen zu ergreifen und Situationen zu korrigieren, noch bevor sich Probleme daraus entwickeln, die sich nachteilig auf die User Experience und damit auf den Geschäftserfolg auswirken. (c) forkART-photographie - stock.adobe.com

Predictive Application Performance Monitoring (APM) ist die zukunftsweisende Weiterentwicklung der herkömmlichen Performanceüberwachung. Zu Recht wird dieses vorausschauende Monitoring von Anwendungen mit Machine Learning in Verbindung gebracht. In beiden Fällen hängt die Fähigkeit, Ausfälle oder Performance-Probleme vorherzusagen, von Erkenntnissen aus der Vergangenheit ab. Im Falle von Predictive APM werden diese Erkenntnisse aus Daten von Hunderten bis Tausenden früheren Nutzungserlebnissen abgeleitet.

Geschichte des Application Performance Monitorings

APM ist schon seit der Entstehung des Internets ein bewährtes Verfahren. Zunächst auf das Rechenzentrum beschränkt, entstand es, um die User Experience im Kontext des Internets zu verstehen. Ursprünglich dominierten passive Monitoring-Techniken mit synthetischen Transaktionen. Durch verteilte Präsenzpunkte im Internet erhielten die Betreiber von Websites einen Überblick, wie ihre Anwendungen bei den zunehmend weltweit verteilten Nutzern funktionierten.

Diese passiven Techniken boten eine generische Durchschnittsbetrachtung der Performance, die weitgehend auf Netzwerkpfaden zwischen dem Präsenzpunkt und der Anwendung basierte. Da sich die meisten Präsenzpunkte auf oder nahe dem Internet-Backbone befanden, konnten sie die Auswirkungen der „letzten Meile“ zwischen dem Backbone und dem Client nicht berücksichtigen. Die Messungen gaben deshalb mehr Aufschluss über den Zustand des Internets und die Verfügbarkeit einer Anwendung als über die User Experience. Allerdings gelang es dadurch sehr gut, Zwischenknoten im Internet als Quelle für Leistungsschwierigkeiten zu identifizieren.

Aktives Monitoring

Um mehr über das tatsächliche Benutzererlebnis und die Verfügbarkeit der Anwendung zu erfahren, führte man das aktive Monitoring ein. Die Anbieter schleusten dazu winzige Codebits in die Client-Anwendung ein, die anschließend genauere Leistungsdaten lieferten. Durch die Überwachung von Live-Interaktionen bot diese aktive Überwachung eine viel realistischere Perspektive auf die User Experience.

Heute können wir Daten über das gesamte Benutzererlebnis hinweg sammeln – vom Client über das Netzwerk bis hin zu Anwendungen und ihren Back-End-Systemen. Allerdings reicht es nicht mehr aus, im Nachhinein zu identifizieren, was schief gelaufen ist und welche Performance-Probleme aufgetreten sind. Denn laut Untersuchungen von PwC hören fast ein Drittel (32 Prozent) aller Kunden nach einer schlechten Erfahrung auf, eine bestimmte Marke zu kaufen. Für Unternehmen ist es deshalb geschäftsentscheidend, Probleme schon zu erkennen, bevor sie auftreten. Hier setzt das Predictive Performance Application Monitoring an.

Vorhersagen möglich

Ebenso wie die vorausschauende Wartung in der Produktion ist Predictive Monitoring geschäftskritisch für die Bereitstellung digitaler Angebote. In dem Maße, wie Unternehmen ihre Abhängigkeit von Anwendungen weiter erhöhen, wird die Verfügbarkeit dieser Applikationen so wichtig wie die ständige Funktionsfähigkeit jeder Maschine.

Mit einem Set an Daten über Benutzererlebnisse, die sich über die gesamte Breite und Tiefe des Anwendungsdatenpfades erstrecken, lassen sich automatisiert Muster und Beziehungen zu einem komplexen Satz von Variablen wie Tageszeit, Standort, Geschäftsfunktion, Browser, Betriebssystem und Netzwerk analysieren. Die Fähigkeit, ein Problem vorherzusagen, basiert auf der Beziehung und Interaktion sowie dem aktuellen Zustand all dieser Komponenten. Ausreißer und Anomalien in der Performance einer bestimmten Komponente, unter denen die Benutzererfahrung leiden könnte, werden so identifiziert und lösen proaktiv eine Warnung aus. Damit ist Predictive APM eine intelligente Lösung, um frühzeitig Maßnahmen zu ergreifen und Situationen zu korrigieren, noch bevor sich Probleme daraus entwickeln, die sich nachteilig auf die User Experience und damit auf den Geschäftserfolg auswirken.

Lori MacVittie ist Principal Technical Evangelist bei F5.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*