WLAN-System erkennt Personen durch Wände

Das System "XModal-ID" von Forschern der University of California, Santa Barbara (UCSB) kann durch Wände sehen, um dahinterstehende Personen zu identifizieren. [...]

"XModal-ID": Spezieller Algorithmus der UCSB vergleicht das Signal mit dem Videomaterial. Einbrecher auf dem Video klar identifizierbar
"XModal-ID": Spezieller Algorithmus der UCSB vergleicht das Signal mit dem Videomaterial. Einbrecher auf dem Video klar identifizierbar (c) UCSB

Das von Forschern der University of California in Santa Barbara (UCSB) entwickelte System „XModal-ID“ funktioniert dank zweier WLAN-Sendeempfänger, die außerhalb des Raumes beziehungsweise Gebäudes positioniert werden. Deren Signal wird von einem Algorithmus analysiert und mit Videomaterial verglichen, das den Verdächtigen zeigt. Die Trefferquote liegt bei 84 Prozent.

Individueller Gang des Menschen

„Unsere neue Video-WLAN-Identifizierungstechnik könnte für eine ganze Reihe von Anwendungen interessant sein – von Überwachungssystemen über Sicherheitslösungen bis hin zu Smart Homes“, so Yasamin Mostofi, Professorin für Electrical and Computer Engineering am College of Engineering der UCSB. Zum Beispiel sei ein Szenario vorstellbar, bei dem die Polizei einen Videomitschnitt eines Einbruchs hat und wissen will, ob sich der Räuber im Gebäude versteckt. „Unsere Methode kann genau das und benötigt dafür nur zwei handelsübliche WLAN-Transceiver.“

Um herauszufinden, ob die Person im Haus mit dem Täter aus dem Video übereinstimmt, legt XModal-ID besonderes Augenmerk auf eine ganz bestimmte Eigenschaft eines Menschen: seinen Gang. „Die Art und Weise, wie wir uns bewegen, ist einzigartig. Wir haben zum ersten Mal einen Weg gefunden, diese Information aus einem Video auf den WLAN-Bereich zu übertragen“, betont Mostofi. Dass dieser Ansatz in der Praxis sehr gut funktioniere, habe man bei zahlreichen Tests am eigenen Campus gesehen, ergänzt Projektmitarbeiter Herbert Cai: „Wir konnten die Leute in 84 Prozent der Fälle richtig identifizieren.“

Charakteristische Schlüsselfaktoren

Bei den Experimenten von Mostofis Team wird ein Algorithmus zunächst mit Videomaterial gefüttert, um ein 3D-Gerüst der äußeren Oberfläche des menschlichen Körpers zu erstellen, die im Bild zu sehen ist. Anschließend simulieren die Forscher dann auf Basis der gesammelten Daten das individuelle elektromagnetische Hochfrequenzsignal, das entstehen würde, wenn sich genau diese Person in Reichweite des WLANSignals aufhält.

Als nächstes werden mittels ZeitFrequenzAnalyse die Schlüsselfaktoren identifiziert, die für den Gang der betreffenden Person charakteristisch sind. „Durch den Vergleich der entsprechenden Ergebnisse aus der Analyse des Videos und dem WLANSignal lässt sich dann relativ eindeutig sagen, ob die Person aus dem Video mit derjenigen hinter der Wand übereinstimmt“, schildert Mostofi.

Das nachfolgende Video zeigt die Funktionsweise des Systems:

Sie sehen gerade einen Platzhalterinhalt von YouTube. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.

Mehr Informationen
(c) UCSB

Mehr Artikel

img-4
News

Schulungsbedarf in den Bereichen KI, Cybersecurity und Cloud

Der IT Skills & Salary Report 2024 unterstreicht den wachsenden Bedarf an Weiterbildung und Umschulung von Arbeitskräften, um mit dem technologischen Fortschritt Schritt zu halten. Künstliche Intelligenz steht bei Entscheidungsträgern ganz oben auf der Liste der Investitionsschwerpunkte, da hier die Team-Kompetenzen am niedrigsten eingestuft werden. […]

img-6
News

KI-gestützte Effizienzoptimierung im Lager

Die österreichische TeDaLoS GmbH, Anbieter von smarten Lagerstandsüberwachungssystemen, hat ein Kapital-Investment erhalten, mit dem das Unternehmen eine beschleunigte internationale Expansion und den Ausbau von KI-gestützten Lösungen zur Optimierung der Materialbewirtschaftung vorantreiben will. […]

Helmut Reich, Managing Director proALPHA Software Austria (c) Erich Reismann
Interview

ERP auf dem Weg zum Digital Twin

Die in einem ERP-System hinterlegten Daten spiegeln in der Regel die Wirklichkeit nur bedingt wider. Mit Hilfe der künstlichen Intelligenz soll sich das bald ändern. proALPHA entwickelt seine Kernapplikation im Zusammenspiel mit seiner schnell wachsenden ERP+-Familie in Richtung eines Digital Twin weiter. Das Ziel: die 1:1-Abbildung der realen Wirtschaftswelt. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*