WLAN-System erkennt Personen durch Wände

Das System "XModal-ID" von Forschern der University of California, Santa Barbara (UCSB) kann durch Wände sehen, um dahinterstehende Personen zu identifizieren. [...]

"XModal-ID": Spezieller Algorithmus der UCSB vergleicht das Signal mit dem Videomaterial. Einbrecher auf dem Video klar identifizierbar
"XModal-ID": Spezieller Algorithmus der UCSB vergleicht das Signal mit dem Videomaterial. Einbrecher auf dem Video klar identifizierbar (c) UCSB

Das von Forschern der University of California in Santa Barbara (UCSB) entwickelte System „XModal-ID“ funktioniert dank zweier WLAN-Sendeempfänger, die außerhalb des Raumes beziehungsweise Gebäudes positioniert werden. Deren Signal wird von einem Algorithmus analysiert und mit Videomaterial verglichen, das den Verdächtigen zeigt. Die Trefferquote liegt bei 84 Prozent.

Individueller Gang des Menschen

„Unsere neue Video-WLAN-Identifizierungstechnik könnte für eine ganze Reihe von Anwendungen interessant sein – von Überwachungssystemen über Sicherheitslösungen bis hin zu Smart Homes“, so Yasamin Mostofi, Professorin für Electrical and Computer Engineering am College of Engineering der UCSB. Zum Beispiel sei ein Szenario vorstellbar, bei dem die Polizei einen Videomitschnitt eines Einbruchs hat und wissen will, ob sich der Räuber im Gebäude versteckt. „Unsere Methode kann genau das und benötigt dafür nur zwei handelsübliche WLAN-Transceiver.“

Um herauszufinden, ob die Person im Haus mit dem Täter aus dem Video übereinstimmt, legt XModal-ID besonderes Augenmerk auf eine ganz bestimmte Eigenschaft eines Menschen: seinen Gang. „Die Art und Weise, wie wir uns bewegen, ist einzigartig. Wir haben zum ersten Mal einen Weg gefunden, diese Information aus einem Video auf den WLAN-Bereich zu übertragen“, betont Mostofi. Dass dieser Ansatz in der Praxis sehr gut funktioniere, habe man bei zahlreichen Tests am eigenen Campus gesehen, ergänzt Projektmitarbeiter Herbert Cai: „Wir konnten die Leute in 84 Prozent der Fälle richtig identifizieren.“

Charakteristische Schlüsselfaktoren

Bei den Experimenten von Mostofis Team wird ein Algorithmus zunächst mit Videomaterial gefüttert, um ein 3D-Gerüst der äußeren Oberfläche des menschlichen Körpers zu erstellen, die im Bild zu sehen ist. Anschließend simulieren die Forscher dann auf Basis der gesammelten Daten das individuelle elektromagnetische Hochfrequenzsignal, das entstehen würde, wenn sich genau diese Person in Reichweite des WLANSignals aufhält.

Als nächstes werden mittels ZeitFrequenzAnalyse die Schlüsselfaktoren identifiziert, die für den Gang der betreffenden Person charakteristisch sind. „Durch den Vergleich der entsprechenden Ergebnisse aus der Analyse des Videos und dem WLANSignal lässt sich dann relativ eindeutig sagen, ob die Person aus dem Video mit derjenigen hinter der Wand übereinstimmt“, schildert Mostofi.

Das nachfolgende Video zeigt die Funktionsweise des Systems:

Sie sehen gerade einen Platzhalterinhalt von YouTube. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.

Mehr Informationen
(c) UCSB

Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*