KI erobert Automobilindustrie

Die Integration von Large Language Models wie ChatGPT eröffnet auch in der Automobilindustrie neue Felder für die Verbesserung von Benutzererfahrungen, Effizienz und Sicherheit. Gunnar Braun, Technical Account Manager for Application Security Solutions bei Synopsys, erklärt im Interview wie diese Modelle die Zukunft der Interaktion mit Fahrzeugsystemen formen können. [...]

Gunnar Braun ist Technical Account Manager for Application Security Solutions bei Synopsys. (c) Synopsys
Gunnar Braun ist Technical Account Manager for Application Security Solutions bei Synopsys. (c) Synopsys

Worin liegen die Vorteile von Large Language Models (LLMs) wie beispielsweise ChatGPT?

Large Language Models sind geeignet, unterschiedliche Anwendungsfälle in der Automobilbranche zu unterstützen. Zum Beispiel erlauben sie die Integration von intelligenten digitalen Sprachassistenten in Fahrzeuge. Solche Sprachassistenten verwenden Natural Language Processing (NLP) und Spracherkennungstechnologie, um die Sprachbefehle des Fahrers oder die der Mitfahrenden zu verstehen und darauf zu reagieren. So kann der Fahrer über Sprachbefehle verschiedene Fahrzeugfunktionen steuern, z. B. die Klimaanlage einstellen, eine Routenplanung anfordern, die Playlist für die Musikwiedergabe aufrufen, die Lautstärke regeln und Anrufe tätigen, ohne irgendwelche Tasten drücken zu müssen. Das verspricht nicht nur eine bessere User Experience, sondern lenkt auch weniger ab. Mercedes-Benz hat vor wenigen Wochen auf der CES seinen LLM-basierten MBUX Virtual Assistent vorgestellt und nach Volkswagen und BMW haben in der Folge weitere Anbieter ähnliche Ankündigungen verlauten lassen. Neben der Integration in die Fahrzeuge können LLMs auch eingesetzt werden, um den Entwicklungsprozess in Automobilunternehmen zu optimieren. LLMs tragen etwa dazu bei, das Anforderungs- und Testmanagement zu vereinfachen. Dazu verarbeiten sie Anforderungsdokumente und überprüfen dazu die Syntax ebenso wie die Anforderungen in Bezug auf Hardware, Software und Prozesse – und sortieren diese bei Bedarf auch aus. Anschließend werden die Ergebnisse dem zuständigen Team zugewiesen.

Wo liegen die potenziellen Risiken der Technologie?

Es gibt eine ganze Reihe von Risiken, die Sie beim Einsatz von KI und LLMs berücksichtigen sollten. Ein gängiger Angriffsvektor ist zum Beispiel der Prompt-Injection-Angriff, bei dem ein Angreifer das KI-System mit bestimmten Daten füttert. Die veranlassen ein Verhalten, für welches das System als solches nicht konzipiert wurde. Man kann diesen Angriff sowohl direkt als auch indirekt ausführen. Der direkte Ansatz ähnelt dem Jailbreaking in dem Sinne, dass er die Beschränkungen bei den Prompts des KI-Systems aufhebt. Dadurch kann der Angreifer direkt auf die Backend-Systeme zugreifen. Bei der indirekten Methode hingegen werden die Daten von einer externen Quelle eingegeben, z. B. von einer mit dem Modell verbundenen Website oder über ein in das KI-System hochgeladenes Dokument.

Ein weiteres Problem ist der grundlegende Datenschutz. Das KI-System sammelt, speichert und verarbeitet große Mengen von Daten, die möglicherweise private oder sensible Informationen enthalten. Ein Angreifer mag es auf diese Daten abgesehen haben und z. B. Standortdaten des Fahrzeugs oder andere Kundendaten aus der von einem KI-System oder einer LLM-Anwendung erzeugten Ausgabe extrahieren.

Welchen Rat geben Sie OEMs, die diese Technologie in ihre Fahrzeuge integrieren wollen?

Viele Erstausrüster erstellen bereits eigene KI-Modelle oder beabsichtigen dies zu tun. Das wiederum birgt das Risiko des Modelldiebstahls. Wenn das Modell beispielsweise proprietäre Algorithmen oder spezifisches geistiges Eigentum enthält, kann es von Angreifern kopiert oder zurückentwickelt (Reverse Engineering) werden. Das gestohlene Modell lässt sich beispielsweise missbrauchen, um zu analysieren, wie bestimmte Funktionen im Detail arbeiten oder um sich unbefugten Zugriff auf sensible Informationen innerhalb des Modells zu verschaffen. Ein KI-Modell für Kfz-Werkstätten enthält vermutlich geschützte Informationen dazu, wie man einen neuen Fahrzeugschlüssel umprogrammiert oder wie man den Werkstatt-Modus eines Steuergeräts aktiviert. Ein Angreifer, der es auf dieses Modell abgesehen hat, kann mittels Reverse Engineering bestimmte Merkmale oder Funktionen des Modells nachbilden. OEMs sollten angesichts des Risikos eines Modelldiebstahls sehr genau überlegen, auf welche Art von kritischen oder sensiblen Daten das KI-Modell trainiert werden sollte.

„Wenn Unternehmen sich auf KI-Technologien verlassen, dann sollten sie sich ernsthaft über Themen wie KI-Halluzinationen und andere Ungenauigkeiten Gedanken machen.“

Gunnar Braun

Ein weiteres Problem beim Erstellen eines eigenen KI-Modells ist die Verwaltung der Daten, auf die das Modell trainiert wird. Ein Angreifer wird beispielsweise versuchen, das Verhalten des KI-Modells durch einen sogenannten »Training Data Poisoning«-Angriff zu manipulieren. Das bedeutet, dass der Angreifer bestimmte Informationen mithilfe von bösartigen oder falschen Daten verändert oder solche in den Trainingsdatensatz einfügt. Dadurch wird das gesamte KI-Modell verfälscht, denn es wird auf der Basis von falschen Daten trainiert. Dies hat zur Folge, dass das KI-System trotz der verfälschten Trainingsdaten, auf denen es fußt, scheinbar korrekt funktioniert, aber sich möglicherweise anders verhält als geplant. Für einen solchen Angriff muss derjenige allerdings Zugang zu den Trainingsdaten haben, die Trainingsdaten unbemerkt verändern können und auch dafür sorgen, dass das KI-Modell mit diesen verfälschten Daten trainiert wird. Da Angriffe auf die Lieferkette aber weiter zunehmen, sollten OEMs diesen Angriffsvektor sorgfältig prüfen und ihn möglichst ausschalten.

KI-Systeme und LLMs bieten nicht zu unterschätzende Vorteile in zahlreichen Anwendungsfällen. Studien haben allerdings gezeigt, dass generative KI-Systeme Ungenauigkeiten aufweisen, das heißt sie erzeugen möglicherweise falsche, unsichere oder potenziell gefährliche Inhalte. Dieses Konzept bezeichnet man als »KI-Halluzinationen« und es tritt in bis zu 20 Prozent aller Fälle auf. Dessen sollten Firmen sich bewusst sein. Generative KI-Systeme geben ihre Antworten in der Regel reichlich selbstbewusst. Die Benutzer stehen also vor der Herausforderung, zu verstehen, welchen Teilen bei der Ausgabe sie vertrauen können, welche sachlich falsch oder welche sich bei unveränderter Verwendung möglicherweise schädlich auswirken. Wenn Unternehmen sich auf KI-Technologien verlassen, dann sollten sie sich ernsthaft über Themen wie KI-Halluzinationen und andere Ungenauigkeiten Gedanken machen. Es empfiehlt sich beispielsweise Plausibilitätsprüfungen zu verwenden, die die Ausgabe der KI-Systeme mit einer zweiten Quelle vergleichen.

Wie wird sich der Einsatz der Technologie in diesem Jahr voraussichtlich weiterentwickeln?

KI-Technologien werden in der Automobilindustrie zunehmend eingesetzt werden. Schon alleine, weil sie etliche Vorteile versprechen und neue Geschäftsfelder erschließen. Wir werden grundsätzlich mehr integrierte KI-Lösungen sehen. Aber auch einen verstärkten Einsatz von KI-Lösungen während der Entwicklungs- und Betriebsphase des Fahrzeuglebenszyklus insgesamt.


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*