Readiness-Check für KI-Projekte

Das KI-Potenzial ist praktisch unerschöpflich. Doch um es richtig zu nutzen und daraus echte Wettbewerbsvorteile zu generieren, muss vorab die Bereitschaft des Unternehmens dafür geklärt werden. Thomas Sengotta vom IT-Dienstleister CGI erklärt, warum der Readiness-Check so wichtig ist, was er genau analysiert und was mit den daraus gewonnenen Erkenntnissen passiert. [...]

Thomas Sengotta, Director Consulting bei CGI. (c) CGI
Thomas Sengotta, Director Consulting bei CGI. (c) CGI

Künstliche Intelligenz ist für Unternehmen in kürzester Zeit zum unverzichtbaren Innovationsmotor geworden. Doch manche euphorisch gestarteten, aber letztlich gescheiterten Projekte zeigen, dass ihr erfolgreicher Einsatz ein systematisches Vorgehen erfordert. Der erste logische Schritt dabei ist eine umfassende Bestandsaufnahme der KI-Readiness eines Unternehmens. Der entsprechende Check liefert ein detailliertes Bild des Status Quo und damit die Voraussetzungen für eine realistische, an den tatsächlichen Fähigkeiten und Potenzialen eines Unternehmens orientierte KI-Strategie.

Die Analyse des KI-Reifegrads

Um KI gewinnbringend einsetzen zu können, ist es essenziell, vorab den aktuellen Stand der Fähigkeiten und Schwachstellen innerhalb der Organisation zu erfassen, um daraus eine Roadmap für zukünftige Erfolge zu entwickeln. Die Analyse prüft die vorhandenen – und vor allem die nicht vorhandenen – Grundlagen dafür. Auf Basis dieser Transparenz kann dann eine übergeordnete KI-Strategie formuliert werden, die klare Ziele setzt und den gewünschten Nutzen definiert. So werden teure Fehlinvestitionen und -entwicklungen, falsche Erwartungen und die damit zwangsläufig verbundenen Enttäuschungen vermieden.

Die Prüfung der KI-Readiness

Basis der Analyse ist ein Framework, mit dem die operativen Kernbereiche eines Unternehmens abgefragt und analysiert werden. Dazu gehören in erster Linie die Daten, die Algorithmen, die Infrastruktur, die Organisation und die Governance. Für jeden dieser Bereiche werden die jeweiligen Stärken und Schwächen sowie die Chancen und Risiken identifiziert. Entscheidend sind dabei die vorhandenen Ressourcen wie strategische Skills, valide Use Cases, die Budget- und Personalsituation und der Stand der IT.

Anschließende Analyse

Die Analyse deckt potenzielle Schwachstellen, Ressourcen-Engpässe oder Risiken bei der KI-Integration auf, seien sie nun technischer, rechtlicher, organisatorischer oder ethischer Natur. Dieses klare Bild des Status quo ist die Voraussetzung für eine realistische KI-Strategie und liefert gleichzeitig die Informationen, welche konkreten Schritte sich ableiten lassen. Daraus resultieren Empfehlungen, etwa für die Ressourcen-Optimierung oder den Aufbau noch nicht ausreichend vorhandener Fähigkeiten, aber auch für die Konzentration der Kräfte auf die vielversprechendsten KI-Aktivitäten. So werden in der Reifegradanalyse auch genau die Geschäftsbereiche und -prozesse identifiziert, in denen KI den größten Beitrag leisten kann.

Regelmäßige Aktualisierung

Angesichts der immensen Innovationsgeschwindigkeit im KI-Sektor ist eine wiederholte Analyse im Jahresrhythmus empfehlenswert. Sie ist einerseits wichtig, um den Stand der Fortschritte nachzuverfolgen, die Einhaltung der KI-Strategie oder die Investitionssicherheit der KI-Initiativen zu prüfen. Andererseits bekommen Unternehmen zusätzliche Impulse, etwa zum Finetuning durch die Einarbeitung aktueller Erfahrungen oder die Adaption zwischenzeitlich entwickelter KI-Innovationen.

Typische Erkenntnisse

Häufig wird die Einführung von KI zu technologisch und einzelfallorientiert angegangen. Anstatt die Vision und die übergeordneten Ziele in den Vordergrund zu stellen, liegt der Fokus oft zu sehr auf einzelnen Use Cases. Aktuell werden viele KI-Projekte entwickelt, ohne dass ihr tatsächlicher Wert für die jeweilige Abteilung oder das gesamte Unternehmen geklärt ist. Die KI-Lösungen sind daher zwar für eine spezifische Aufgabe nutzbar, aber häufig nicht auf andere Einsatzbereiche skalierbar, was sie ineffizient macht.

Konkrete Handlungsempfehlungen

Um tatsächlich nachhaltige Innovationen im Unternehmen zu schaffen, müssen die Projekte in eine umfassende KI-Strategie eingebettet werden. Häufig fehlt es an einer effektiven Koordination aller KI-Aktivitäten und der Fokus liegt zu sehr auf technologischen Themen. Wichtiger ist jedoch vielmehr die Entwicklung sinnvoller KI-Use-Cases. Ein zentrales Problem dabei ist die oft mangelhafte Datenqualität. Ab einem bestimmten Zeitpunkt ist es daher ratsam, über den Aufbau eines internen Center of Excellence nachzudenken, in dem das KI-Wissen gebündelt, Daten aufbereitet, KPIs formuliert und Projekte ROI-zentriert in einen sinnvollen Zusammenhang gebracht werden.

Für die sinnvolle operative Nutzung von künstlicher Intelligenz trifft das zu, was für digitale Strategien im Allgemeinen gilt: Noch so viel Power nützt wenig, wenn sie nicht auf die Straße gebracht wird. Die entscheidenden Erfolgsfaktoren für KI-Projekte sind daher eine enge Abstimmung zwischen Geschäfts- und IT-Prozessen, eine tiefgreifende Datenstrategie und eine hohe Geschäftsagilität.

*Thomas Sengotta ist Director Consulting bei CGI.


Mehr Artikel

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Interview

Mit Wearables die Gesundheit immer im Blick

Wearables sollen künftig nicht nur physikalische Größen wie Puls und Schrittzahl messen, sondern auch chemische und biologische Signale wie Krankheitserreger oder Hormone. In Kombination mit KI sollen so Krankheiten bereits im Frühstadium erkannt werden. Im Interview gibt Can Dincer, Professor für Sensors and Wearables for Healthcare an der Technischen Universität München, Einblicke in seine Forschung. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*