TU Wien auf dem Weg zum Quantencomputer

Forschern an der TU Wien ist es gelungen, die Speicherdauer von Informationen in Quantensystemen deutlich zu verbessern. [...]

Die Elektronik in unseren Computern kennt nur zwei Zustände: entweder „null“ oder „eins“. Quantensysteme hingegen können beliebige Überlagerungen von Zuständen annehmen, also „null“ und „eins“ gleichzeitig. Forscher hoffen, basierend darauf in Zukunft superschnelle Quantencomputer bauen zu können, doch bis dahin sind noch schwierige technologische Probleme zu lösen. „Insbesondere hat man damit zu kämpfen, dass gespeicherte Quantenzustände durch Wechselwirkungen mit der Umgebung extrem leicht zerstört werden“, erklärt Johannes Majer vom Atominstitut der TU Wien, dem es gelungen ist, einen speziellen Schutzeffekt zu nutzen, um die Stabilität eines Quantensystems deutlich zu erhöhen.

„Es gibt heute ganz unterschiedliche Konzepte für die Speicherung von Quanteninformation. Wir verwenden ein Hybridsystem aus zwei völlig verschiedenen Quantentechnologien“, sagt Majer. Gemeinsam mit seinem Team koppelt er Mikrowellen und Atome und arbeitet damit an der Verwirklichung eines Quantenspeichers. Die theoretischen Modelle dazu wurden von Dmitry Krimer und Stefan Rotter vom Institut für Theoretische Physik der TU Wien entwickelt.

In einem Mikrowellenresonator werden Photonen erzeugt. Sie wechselwirken mit dem Spin von Stickstoffatomen, die in Diamant eingebaut sind. Der Mikrowellenresonator ermöglicht Quanteninformation schnell zu transportieren, die Atomspins im Diamant können diese speichern, zumindest für eine Zeitdauer von einigen hundert Nanosekunden. Lange genug, verglichen mit der extrem kurzen Zeitskala, auf der sich Photonen im Mikrowellenresonator hin und her bewegen.

„Eigentlich sind alle Stickstoffatome zwar völlig gleich, aber wenn sie im Diamant jeweils in einer leicht unterschiedlichen Umgebung platziert sind, dann haben sie auch unterschiedliche Schwingungsfrequenzen“, sagt Stefan Putz, Doktorand am Atominstitut. Die Atomspins verhalten sich dann wie ein Raum voller Pendeluhren mit leicht unterschiedlich langen Pendeln: Am Anfang schwingen sie ziemlich synchron, aber da sie niemals völlig identisch sind, laufen sie nach einer gewissen Zeit aus dem Takt und übrig bleibt ein Durcheinander.

„Wenn die Energien der einzelnen Spins auf passende Weise verteilt sind, kann man durch eine starke Kopplung zwischen Atomspins und dem Mikrowellenresonator erreichen, dass die Spins viel länger im Gleichtakt schwingen“, erklärt Dmitry Krimer. Die Atomspins haben zwar keinen direkten Einfluss aufeinander, aber die Tatsache, dass sie kollektiv stark an den Mikrowellenresonator gekoppelt sind, verhindert, dass der Quantenspeicher in Zustände übergeht, die für Quanteninformations-Übertragung nicht mehr genutzt werden können. „Dieser Quanten-Schutzeffekt gegen den Zerfall der quantenmechanischen Eigenschaften des Systems verlängert die Zeitdauer, in der man Quanteninformation aus den Atomspins auslesen kann, erheblich“, sagt Majer. „Durch die Verbesserung der Quanten-Kohärenzzeit auf Basis dieses Cavity Protection Effects eröffnen sich vielversprechende Anwendungsmöglichkeiten für unsere hybriden Quantenspeicher“, hofft der Forscher. (pi/oli)


Mehr Artikel

Gregor Schmid, Projektcenterleiter bei Kumavision, über die Digitalisierung im Mittelstand und die Chancen durch Künstliche Intelligenz. (c) timeline/Rudi Handl
Interview

„Die Zukunft ist modular, flexibel und KI-gestützt“

Im Gespräch mit der ITWELT.at verdeutlicht Gregor Schmid, Projektcenterleiter bei Kumavision, wie sehr sich die Anforderungen an ERP-Systeme und die digitale Transformation in den letzten Jahren verändert haben und verweist dabei auf den Trend zu modularen Lösungen, die Bedeutung der Cloud und die Rolle von Künstlicher Intelligenz (KI) in der Unternehmenspraxis. […]

News

Richtlinien für sichere KI-Entwicklung

Die „Guidelines for Secure Development and Deployment of AI Systems“ von Kaspersky behandeln zentrale Aspekte der Entwicklung, Bereitstellung und des Betriebs von KI-Systemen, einschließlich Design, bewährter Sicherheitspraktiken und Integration, ohne sich auf die Entwicklung grundlegender Modelle zu fokussieren. […]

News

Datensilos blockieren Abwehrkräfte von generativer KI

Damit KI eine Rolle in der Cyberabwehr spielen kann, ist sie auf leicht zugängliche Echtzeitdaten angewiesen. Das heißt, die zunehmende Leistungsfähigkeit von GenAI kann nur dann wirksam werden, wenn die KI Zugriff auf einwandfreie, validierte, standardisierte und vor allem hochverfügbare Daten in allen Anwendungen und Systemen sowie für alle Nutzer hat. Dies setzt allerdings voraus, dass Unternehmen in der Lage sind, ihre Datensilos aufzulösen. […]

Be the first to comment

Leave a Reply

Your email address will not be published.


*